Back to home page

MITgcm

 
 

    


Warning, /doc/phys_pkgs/fizhi.rst is written in an unsupported language. File is not indexed.

view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
8679f9097b Jeff*0001 .. include:: ../defs.hrst
                0002 
                0003 .. _sub_phys_pkg_fizhi:
                0004 
                0005 Fizhi: High-end Atmospheric Physics
                0006 -----------------------------------
                0007 
                0008 
                0009 Introduction
                0010 ++++++++++++
                0011 
                0012 The fizhi (high-end atmospheric physics) package includes a collection
                0013 of state-of-the-art physical parameterizations for atmospheric
                0014 radiation, cumulus convection, atmospheric boundary layer turbulence,
                0015 and land surface processes. The collection of atmospheric physics
                0016 parameterizations were originally used together as part of the GEOS-3
                0017 (Goddard Earth Observing System-3) GCM developed at the NASA/Goddard
                0018 Global Modelling and Assimilation Office (GMAO).
                0019 
                0020 Equations
                0021 +++++++++
                0022 
                0023 Moist Convective Processes:
                0024 
                0025 
                0026 .. _para_phys_pkg_fizhi_mc:
                0027 
                0028 Sub-grid and Large-scale Convection
                0029 ###################################
                0030 
                0031 Sub-grid scale cumulus convection is parameterized using the Relaxed
                0032 Arakawa Schubert (RAS) scheme of :cite:`moorsz:92`, which is a linearized Arakawa
                0033 Schubert type scheme. RAS predicts the mass flux from an ensemble of
                0034 clouds. Each subensemble is identified by its entrainment rate and level
                0035 of neutral bouyancy which are determined by the grid-scale properties.
                0036 
                0037 The thermodynamic variables that are used in RAS to describe the grid
                0038 scale vertical profile are the dry static energy, :math:`s=c_pT +gz`,
                0039 and the moist static energy, :math:`h=c_p T + gz + Lq`. The conceptual
                0040 model behind RAS depicts each subensemble as a rising plume cloud,
                0041 entraining mass from the environment during ascent, and detraining all
                0042 cloud air at the level of neutral buoyancy. RAS assumes that the
                0043 normalized cloud mass flux, :math:`\eta`, normalized by the cloud base
                0044 mass flux, is a linear function of height, expressed as:
                0045 
                0046 .. math::
                0047 
0bad585a21 Navi*0048    \pp{\eta(z)}{z} = \lambda \hspace{0.4cm} \text{or} \hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} = 
                0049    -\frac{c_p}{g} \theta \lambda
8679f9097b Jeff*0050 
                0051 where we have used the hydrostatic equation written in the form:
                0052 
0bad585a21 Navi*0053 .. math:: \pp{z}{P^{\kappa}} = -\frac{c_p}{g} \theta
8679f9097b Jeff*0054 
                0055 The entrainment parameter, :math:`\lambda`, characterizes a particular
                0056 subensemble based on its detrainment level, and is obtained by assuming
                0057 that the level of detrainment is the level of neutral buoyancy, ie., the
                0058 level at which the moist static energy of the cloud, :math:`h_c`, is
                0059 equal to the saturation moist static energy of the environment,
                0060 :math:`h^*`. Following :cite:`moorsz:92`, :math:`\lambda` may be written as
                0061 
0bad585a21 Navi*0062 .. math:: \lambda = \frac{h_B - h^*_D}{\frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}
8679f9097b Jeff*0063 
                0064 where the subscript :math:`B` refers to cloud base, and the subscript
                0065 :math:`D` refers to the detrainment level.
                0066 
                0067 The convective instability is measured in terms of the cloud work
                0068 function :math:`A`, defined as the rate of change of cumulus kinetic
                0069 energy. The cloud work function is related to the buoyancy, or the
                0070 difference between the moist static energy in the cloud and in the
                0071 environment:
                0072 
                0073 .. math::
                0074 
                0075    A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma}
                0076    \left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa}
                0077 
                0078 where :math:`\gamma` is :math:`\frac{L}{c_p}\pp{q^*}{T}` obtained from
                0079 the Claussius Clapeyron equation, and the subscript :math:`c` refers to
                0080 the value inside the cloud.
                0081 
                0082 To determine the cloud base mass flux, the rate of change of :math:`A`
                0083 in time *due to dissipation by the clouds* is assumed to approximately
                0084 balance the rate of change of :math:`A` *due to the generation by the
                0085 large scale*. This is the quasi-equilibrium assumption, and results in
                0086 an expression for :math:`m_B`:
                0087 
0bad585a21 Navi*0088 .. math:: m_B = \dfrac{- \left. \frac{dA}{dt} \right|_{\rm ls}}{K}
8679f9097b Jeff*0089 
                0090 where :math:`K` is the cloud kernel, defined as the rate of change of
                0091 the cloud work function per unit cloud base mass flux, and is currently
                0092 obtained by analytically differentiating the expression for :math:`A` in
                0093 time. The rate of change of :math:`A` due to the generation by the large
                0094 scale can be written as the difference between the current
0bad585a21 Navi*0095 :math:`A(t+\Delta t)` and its equilibrated value after the previous
8679f9097b Jeff*0096 convective time step :math:`A(t)`, divided by the time step.
0bad585a21 Navi*0097 :math:`A(t)` is approximated as some critical :math:`A_{\rm crit}`, computed
                0098 by Lord (1982) from in situ observations.
8679f9097b Jeff*0099 
                0100 The predicted convective mass fluxes are used to solve grid-scale
                0101 temperature and moisture budget equations to determine the impact of
                0102 convection on the large scale fields of temperature (through latent
                0103 heating and compensating subsidence) and moisture (through precipitation
                0104 and detrainment):
                0105 
                0106 .. math:: \left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p}
                0107 
                0108 and
                0109 
0bad585a21 Navi*0110 .. math:: \left.{\pp{q}{t}}\right|_{c} = \alpha \frac{m_B}{L} \eta \left( \pp{h}{p}-\pp{s}{p} \right)
8679f9097b Jeff*0111 
                0112 where :math:`\theta = \frac{T}{P^{\kappa}}`, :math:`P = (p/p_0)`, and
                0113 :math:`\alpha` is the relaxation parameter.
                0114 
                0115 As an approximation to a full interaction between the different
                0116 allowable subensembles, many clouds are simulated frequently, each
                0117 modifying the large scale environment some fraction :math:`\alpha` of
                0118 the total adjustment. The parameterization thereby “relaxes” the large
0bad585a21 Navi*0119 scale environment towards equilibrium.
8679f9097b Jeff*0120 
                0121 In addition to the RAS cumulus convection scheme, the fizhi package
                0122 employs a Kessler-type scheme for the re-evaporation of falling rain :cite:`sudm:88`,
                0123 which correspondingly adjusts the temperature assuming :math:`h` is
                0124 conserved. RAS in its current formulation assumes that all cloud water
                0125 is deposited into the detrainment level as rain. All of the rain is
                0126 available for re-evaporation, which begins in the level below
                0127 detrainment. The scheme accounts for some microphysics such as the
                0128 rainfall intensity, the drop size distribution, as well as the
                0129 temperature, pressure and relative humidity of the surrounding air. The
                0130 fraction of the moisture deficit in any model layer into which the rain
                0131 may re-evaporate is controlled by a free parameter, which allows for a
                0132 relatively efficient re-evaporation of liquid precipitate and larger
                0133 rainout for frozen precipitation.
                0134 
                0135 Due to the increased vertical resolution near the surface, the lowest
                0136 model layers are averaged to provide a 50 mb thick sub-cloud layer for
                0137 RAS. Each time RAS is invoked (every ten simulated minutes), a number of
                0138 randomly chosen subensembles are checked for the possibility of
                0139 convection, from just above cloud base to 10 mb.
                0140 
                0141 Supersaturation or large-scale precipitation is initiated in the fizhi
                0142 package whenever the relative humidity in any grid-box exceeds a
0bad585a21 Navi*0143 critical value, currently 100%. The large-scale precipitation
8679f9097b Jeff*0144 re-evaporates during descent to partially saturate lower layers in a
                0145 process identical to the re-evaporation of convective rain.
                0146 
0bad585a21 Navi*0147 .. _fizhi_clouds:
                0148 
8679f9097b Jeff*0149 Cloud Formation
                0150 ###############
                0151 
                0152 Convective and large-scale cloud fractons which are used for
                0153 cloud-radiative interactions are determined diagnostically as part of
                0154 the cumulus and large-scale parameterizations. Convective cloud
                0155 fractions produced by RAS are proportional to the detrained liquid water
                0156 amount given by
                0157 
0bad585a21 Navi*0158 .. math:: F_{\rm RAS} = \min\left[ \frac{l_{\rm RAS}}{l_c}, 1 \right]
8679f9097b Jeff*0159 
                0160 where :math:`l_c` is an assigned critical value equal to :math:`1.25`
                0161 g/kg. A memory is associated with convective clouds defined by:
                0162 
0bad585a21 Navi*0163 .. math:: F_{\rm RAS}^n = \min\left[ F_{\rm RAS} + \left(1-\frac{\Delta t_{\rm RAS}}{\tau}\right) F_{\rm RAS}^{n-1} \, , \, 1 \right],
8679f9097b Jeff*0164 
0bad585a21 Navi*0165 where :math:`F_{\rm RAS}` is the instantaneous cloud fraction and
                0166 :math:`F_{\rm RAS}^{n-1}` is the cloud fraction from the previous RAS
8679f9097b Jeff*0167 timestep. The memory coefficient is computed using a RAS cloud
                0168 timescale, :math:`\tau`, equal to 1 hour. RAS cloud fractions are
0bad585a21 Navi*0169 cleared when they fall below 5%.
8679f9097b Jeff*0170 
                0171 Large-scale cloudiness is defined, following Slingo and Ritter (1985),
                0172 as a function of relative humidity:
                0173 
0bad585a21 Navi*0174 .. math:: F_{\rm ls} = \min\left[ { \left( \frac{\textrm{RH}-\textrm{RH}_c}{1-\textrm{RH}_c} \right) }^2 \, , \, 1 \right]
8679f9097b Jeff*0175 
                0176 where
                0177 
0bad585a21 Navi*0178 .. math::
                0179    \begin{aligned}
                0180    \textrm{RH}_c & = 1-s(1-s)(2-\sqrt{3}+2\sqrt{3}s)r \\
                0181    s & = p/p_{\rm surf} \\
                0182    r & = \left(\frac{1.0-\textrm{RH}_{\rm min}}{\alpha}\right) \\
                0183    \textrm{RH}_{\rm min} & = 0.75 \\
                0184    \alpha & = 0.573285 \end{aligned}
8679f9097b Jeff*0185 
                0186 These cloud fractions are suppressed, however, in regions where the
                0187 convective sub-cloud layer is conditionally unstable. The functional
0bad585a21 Navi*0188 form of :math:`\textrm{RH}_c` is shown in :numref:`rhcrit`
8679f9097b Jeff*0189 
                0190 
                0191 
                0192  .. figure:: figs/rhcrit.*
                0193     :width: 70%
                0194     :align: center
                0195     :alt: critical relative humidity for clouds
                0196     :name: rhcrit
                0197 
                0198     Critical Relative Humidity for Clouds.
                0199 
                0200 
                0201 
                0202 The total cloud fraction in a grid box is determined by the larger of
                0203 the two cloud fractions:
                0204 
0bad585a21 Navi*0205 .. math:: F_{\rm cld} = \max \left[ F_{\rm RAS} \, , \, F_{\rm ls} \right]
8679f9097b Jeff*0206 
                0207 Finally, cloud fractions are time-averaged between calls to the
                0208 radiation packages.
                0209 
                0210 Radiation:
                0211 
                0212 The parameterization of radiative heating in the fizhi package includes
                0213 effects from both shortwave and longwave processes. Radiative fluxes are
                0214 calculated at each model edge-level in both up and down directions. The
                0215 heating rates/cooling rates are then obtained from the vertical
                0216 divergence of the net radiative fluxes.
                0217 
                0218 The net flux is
                0219 
                0220 .. math:: F = F^\uparrow - F^\downarrow
                0221 
                0222 where :math:`F` is the net flux, :math:`F^\uparrow` is the upward flux
                0223 and :math:`F^\downarrow` is the downward flux.
                0224 
                0225 The heating rate due to the divergence of the radiative flux is given by
                0226 
                0227 .. math:: \pp{\rho c_p T}{t} = - \pp{F}{z}
                0228 
                0229 or
                0230 
                0231 .. math:: \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
                0232 
                0233 where :math:`g` is the accelation due to gravity and :math:`c_p` is the
                0234 heat capacity of air at constant pressure.
                0235 
                0236 The time tendency for Longwave Radiation is updated every 3 hours. The
                0237 time tendency for Shortwave Radiation is updated once every three hours
                0238 assuming a normalized incident solar radiation, and subsequently
                0239 modified at every model time step by the true incident radiation. The
0bad585a21 Navi*0240 solar constant value used in the package is equal to 1365 W m\ :sup:`--2`
                0241 and a CO\ :sub:`2` mixing ratio of 330 ppm. For the ozone mixing ratio,
8679f9097b Jeff*0242 monthly mean zonally averaged climatological values specified as a
                0243 function of latitude and height :cite:`rosen:87` are linearly interpolated to the
                0244 current time.
                0245 
                0246 Shortwave Radiation
                0247 ###################
                0248 
                0249 The shortwave radiation package used in the package computes solar
                0250 radiative heating due to the absoption by water vapor, ozone, carbon
                0251 dioxide, oxygen, clouds, and aerosols and due to the scattering by
                0252 clouds, aerosols, and gases. The shortwave radiative processes are
                0253 described by :cite:`chou:90,chou:92`. This shortwave package uses the Delta-Eddington
                0254 approximation to compute the bulk scattering properties of a single
                0255 layer following King and Harshvardhan (JAS, 1986). The transmittance and
                0256 reflectance of diffuse radiation follow the procedures of Sagan and
                0257 Pollock (JGR, 1967) and :cite:`lhans:74`.
                0258 
                0259 Highly accurate heating rate calculations are obtained through the use
                0260 of an optimal grouping strategy of spectral bands. By grouping the UV
                0261 and visible regions as indicated in :numref:`tab_phys_pkg_fizhi_solar1`, the
                0262 Rayleigh scattering and the ozone absorption of solar radiation can be
                0263 accurately computed in the ultraviolet region and the photosynthetically
                0264 active radiation (PAR) region. The computation of solar flux in the
                0265 infrared region is performed with a broadband parameterization using the
                0266 spectrum regions shown in :numref:`tab_phys_pkg_fizhi_solar2`. The solar radiation
                0267 algorithm used in the fizhi package can be applied not only for climate
                0268 studies but also for studies on the photolysis in the upper atmosphere
                0269 and the photosynthesis in the biosphere.
                0270 
                0271 
0bad585a21 Navi*0272 .. table:: UV and visible spectral regions used in shortwave radiation package. 
8679f9097b Jeff*0273   :name: tab_phys_pkg_fizhi_solar1
                0274 
                0275   +----------+--------+-----------------------+
                0276   |     **UV and Visible Spectral Regions**   |
                0277   +----------+--------+-----------------------+
                0278   | Region   | Band   | Wavelength (micron)   |
                0279   +==========+========+=======================+
                0280   | UV-C     | 1.     | .175 - .225           |
                0281   +----------+--------+-----------------------+
                0282   |          | 2.     | .225 - .245           |
                0283   +----------+--------+-----------------------+
                0284   |          |        | .260 - .280           |
                0285   +----------+--------+-----------------------+
                0286   |          | 3.     | .245 - .260           |
                0287   +----------+--------+-----------------------+
                0288   | UV-B     | 4.     | .280 - .295           |
                0289   +----------+--------+-----------------------+
                0290   |          | 5.     | .295 - .310           |
                0291   +----------+--------+-----------------------+
                0292   |          | 6.     | .310 - .320           |
                0293   +----------+--------+-----------------------+
                0294   | UV-A     | 7.     | .320 - .400           |
                0295   +----------+--------+-----------------------+
                0296   | PAR      | 8.     | .400 - .700           |
                0297   +----------+--------+-----------------------+
                0298 
                0299 
                0300 
                0301 
0bad585a21 Navi*0302 .. table:: Infrared spectral regions used in shortwave radiation package.
8679f9097b Jeff*0303   :name: tab_phys_pkg_fizhi_solar2
                0304 
                0305   +--------+---------------------------------+-----------------------+
                0306   |            **Infrared Spectral Regions**                         |
                0307   +--------+---------------------------------+-----------------------+
                0308   | Band   | Wavenumber (cm\ :sup:`--1`)     | Wavelength (micron)   |
                0309   +========+=================================+=======================+
                0310   | 1      | 1000-4400                       | 2.27-10.0             |
                0311   +--------+---------------------------------+-----------------------+
                0312   | 2      | 4400-8200                       | 1.22-2.27             |
                0313   +--------+---------------------------------+-----------------------+
                0314   | 3      | 8200-14300                      | 0.70-1.22             |
                0315   +--------+---------------------------------+-----------------------+
                0316 
                0317 
                0318 Within the shortwave radiation package, both ice and liquid cloud
                0319 particles are allowed to co-exist in any of the model layers. Two sets
                0320 of cloud parameters are used, one for ice paticles and the other for
                0321 liquid particles. Cloud parameters are defined as the cloud optical
                0322 thickness and the effective cloud particle size. In the fizhi package,
                0323 the effective radius for water droplets is given as 10 microns, while 65
                0324 microns is used for ice particles. The absorption due to aerosols is
                0325 currently set to zero.
                0326 
                0327 To simplify calculations in a cloudy atmosphere, clouds are grouped into
                0328 low (:math:`p>700` mb), middle (700 mb :math:`\ge p > 400` mb), and high
                0329 (:math:`p < 400` mb) cloud regions. Within each of the three regions,
                0330 clouds are assumed maximally overlapped, and the cloud cover of the
                0331 group is the maximum cloud cover of all the layers in the group. The
                0332 optical thickness of a given layer is then scaled for both the direct
                0333 (as a function of the solar zenith angle) and diffuse beam radiation so
                0334 that the grouped layer reflectance is the same as the original
                0335 reflectance. The solar flux is computed for each of eight cloud
                0336 realizations possible within this low/middle/high classification, and
                0337 appropriately averaged to produce the net solar flux.
                0338 
                0339 Longwave Radiation
                0340 ##################
                0341 
                0342 The longwave radiation package used in the fizhi package is thoroughly
39fa6219cc Oliv*0343 described by :cite:`chsz:94`. As described in that document, IR fluxes are
                0344 computed due to absorption by water vapor, carbon dioxide, and ozone. The
                0345 spectral bands together with their absorbers and parameterization methods,
                0346 configured for the fizhi package, are shown in
                0347 :numref:`tab_phys_pkg_fizhi_longwave`.
8679f9097b Jeff*0348 
0bad585a21 Navi*0349 .. table:: IR spectral bands, absorbers, and parameterization method
8679f9097b Jeff*0350   :name: tab_phys_pkg_fizhi_longwave
                0351 
                0352   +----------------+------------------------------------+------------------------------+----------+
                0353   |                  **IR Spectral Bands**                                                        |
                0354   +----------------+------------------------------------+------------------------------+----------+
                0355   | Band           | Spectral Range (cm\ :sup:`--1`)    | Absorber                     | Method   |
                0356   +================+====================================+==============================+==========+
0bad585a21 Navi*0357   | 1              | 0-340                              | H\ :sub:`2`\ O line          | T        |
8679f9097b Jeff*0358   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0359   | 2              | 340-540                            | H\ :sub:`2`\ O line          | T        |
8679f9097b Jeff*0360   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0361   | 3a             | 540-620                            | H\ :sub:`2`\ O line          | K        |
8679f9097b Jeff*0362   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0363   | 3b             | 620-720                            | H\ :sub:`2`\ O continuum     | S        |
8679f9097b Jeff*0364   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0365   | 3b             | 720-800                            | CO\ :sub:`2`                 | T        |
8679f9097b Jeff*0366   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0367   | 4              | 800-980                            | H\ :sub:`2`\ O line          | K        |
8679f9097b Jeff*0368   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0369   |                |                                    | H\ :sub:`2`\ O continuum     | S        |
8679f9097b Jeff*0370   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0371   |                |                                    | H\ :sub:`2`\ O line          | K        |
8679f9097b Jeff*0372   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0373   | 5              | 980-1100                           | H\ :sub:`2`\ O continuum     | S        |
8679f9097b Jeff*0374   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0375   |                |                                    | O\ :sub:`3`                  | T        |
8679f9097b Jeff*0376   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0377   | 6              | 1100-1380                          | H\ :sub:`2`\ O line          | K        |
8679f9097b Jeff*0378   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0379   |                |                                    | H\ :sub:`2`\ O continuum     | S        |
8679f9097b Jeff*0380   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0381   | 7              | 1380-1900                          | H\ :sub:`2`\ O line          | T        |
8679f9097b Jeff*0382   +----------------+------------------------------------+------------------------------+----------+
0bad585a21 Navi*0383   | 8              | 1900-3000                          | H\ :sub:`2`\ O line          | K        |
8679f9097b Jeff*0384   +----------------+------------------------------------+------------------------------+----------+
                0385   | K: :math:`k`-distribution method with linear pressure scaling                                 |
                0386   +----------------+------------------------------------+------------------------------+----------+
                0387   | T: Table look-up with temperature and pressure scaling                                        |
                0388   +----------------+------------------------------------+------------------------------+----------+
                0389   | S: One-parameter temperature scaling                                                          |
                0390   +----------------+------------------------------------+------------------------------+----------+
                0391 
                0392 
                0393 The longwave radiation package accurately computes cooling rates for the
                0394 middle and lower atmosphere from 0.01 mb to the surface. Errors are
0bad585a21 Navi*0395 < 0.4 C day\ :sup:`--1` in cooling rates and < 1% in
8679f9097b Jeff*0396 fluxes. From Chou and Suarez, it is estimated that the total effect of
                0397 neglecting all minor absorption bands and the effects of minor infrared
0bad585a21 Navi*0398 absorbers such as nitrous oxide (N\ :sub:`2`\ O), methane
                0399 (CH\ :sub:`4`), and the chlorofluorocarbons (CFCs), is an underestimate
                0400 of :math:`\approx 5` W m\ :sup:`--2` in the downward flux at the surface
                0401 and an overestimate of :math:`\approx 3` W m\ :sup:`--2` in the upward
8679f9097b Jeff*0402 flux at the top of the atmosphere.
                0403 
                0404 Similar to the procedure used in the shortwave radiation package, clouds
                0405 are grouped into three regions catagorized as low/middle/high. The net
                0406 clear line-of-site probability :math:`(P)` between any two levels,
                0407 :math:`p_1` and :math:`p_2 \quad (p_2 > p_1)`, assuming randomly
                0408 overlapped cloud groups, is simply the product of the probabilities
                0409 within each group:
                0410 
0bad585a21 Navi*0411 .. math:: P_{\rm net} = P_{\rm low} \times P_{\rm mid} \times P_{\rm hi}
8679f9097b Jeff*0412 
                0413 Since all clouds within a group are assumed maximally overlapped, the
                0414 clear line-of-site probability within a group is given by:
                0415 
0bad585a21 Navi*0416 .. math:: P_{\rm group} = 1 - F_{\rm max}
8679f9097b Jeff*0417 
0bad585a21 Navi*0418 where :math:`F_{\rm max}` is the maximum cloud fraction encountered between
8679f9097b Jeff*0419 :math:`p_1` and :math:`p_2` within that group. For groups and/or levels
                0420 outside the range of :math:`p_1` and :math:`p_2`, a clear line-of-site
                0421 probability equal to 1 is assigned.
                0422 
                0423 Cloud-Radiation Interaction
                0424 ###########################
                0425 
                0426 The cloud fractions and diagnosed cloud liquid water produced by moist
                0427 processes within the fizhi package are used in the radiation packages to
                0428 produce cloud-radiative forcing. The cloud optical thickness associated
                0429 with large-scale cloudiness is made proportional to the diagnosed
                0430 large-scale liquid water, :math:`\ell`, detrained due to
                0431 super-saturation. Two values are used corresponding to cloud ice
                0432 particles and water droplets. The range of optical thickness for these
                0433 clouds is given as
                0434 
0bad585a21 Navi*0435 .. math:: 0.0002 \le \tau_{\rm ice} (\text{mb}^{-1}) \le 0.002  \quad\mbox{for}\quad  0 \le \ell \le 2 \; \text{mg/kg}
8679f9097b Jeff*0436 
0bad585a21 Navi*0437 .. math:: 0.02 \le \tau_{\rm H_2O} (\text{mb}^{-1}) \le 0.2  \quad\mbox{for}\quad  0 \le \ell \le 10 \; \text{mg/kg}
8679f9097b Jeff*0438 
                0439 The partitioning, :math:`\alpha`, between ice particles and water
                0440 droplets is achieved through a linear scaling in temperature:
                0441 
0bad585a21 Navi*0442 .. math:: 0 \le \alpha \le 1 \quad\mbox{for}\quad  233.15 \le T \le 253.15
8679f9097b Jeff*0443 
                0444 The resulting optical depth associated with large-scale cloudiness is
                0445 given as
                0446 
0bad585a21 Navi*0447 .. math:: \tau_{\rm ls} = \alpha \tau_{\rm H_2O} + (1-\alpha) \tau_{\rm ice}
8679f9097b Jeff*0448 
                0449 The optical thickness associated with sub-grid scale convective clouds
                0450 produced by RAS is given as
                0451 
0bad585a21 Navi*0452 .. math:: \tau_{\rm RAS} = 0.16 \; \text{mb}^{-1}
8679f9097b Jeff*0453 
                0454 The total optical depth in a given model layer is computed as a weighted
                0455 average between the large-scale and sub-grid scale optical depths,
                0456 normalized by the total cloud fraction in the layer:
                0457 
0bad585a21 Navi*0458 .. math:: \tau = \left( \frac{F_{\rm RAS} \,\,\, \tau_{\rm RAS} + F_{\rm ls} \,\,\, \tau_{\rm ls} }{ F_{\rm RAS}+F_{\rm ls} } \right) \Delta p
8679f9097b Jeff*0459 
0bad585a21 Navi*0460 where :math:`F_{\rm RAS}` and :math:`F_{\rm ls}` are the time-averaged cloud
8679f9097b Jeff*0461 fractions associated with RAS and large-scale processes described in
0bad585a21 Navi*0462 :numref:`fizhi_clouds`. The optical thickness for the longwave
                0463 radiative feedback is assumed to be 75%  of these values.
8679f9097b Jeff*0464 
                0465 The entire Moist Convective Processes Module is called with a frequency
                0466 of 10 minutes. The cloud fraction values are time-averaged over the
                0467 period between Radiation calls (every 3 hours). Therefore, in a
                0468 time-averaged sense, both convective and large-scale cloudiness can
                0469 exist in a given grid-box.
                0470 
                0471 Turbulence
                0472 ##########
                0473 
                0474 Turbulence is parameterized in the fizhi package to account for its
                0475 contribution to the vertical exchange of heat, moisture, and momentum.
                0476 The turbulence scheme is invoked every 30 minutes, and employs a
                0477 backward-implicit iterative time scheme with an internal time step of 5
                0478 minutes. The tendencies of atmospheric state variables due to turbulent
                0479 diffusion are calculated using the diffusion equations:
                0480 
                0481 .. math::
0bad585a21 Navi*0482    \begin{aligned}
                0483    {\pp{u}{t}}_{\rm turb} &= {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
                0484     = {\pp{}{z} }{\left(K_m \pp{u}{z}\right)} \nonumber \\
                0485    {\pp{v}{t}}_{\rm turb} &= {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
                0486     = {\pp{}{z} }{\left(K_m \pp{v}{z}\right)} \nonumber \\
                0487    {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{\rm turb} &= 
8679f9097b Jeff*0488    P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
0bad585a21 Navi*0489     = P^{\kappa}{\pp{}{z} }{\left(K_h \pp{\theta_v}{z}\right)} \nonumber \\
                0490    {\pp{q}{t}}_{\rm turb} &= {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
                0491     = {\pp{}{z} }{\left(K_h \pp{q}{z}\right)}
                0492    \end{aligned}
8679f9097b Jeff*0493 
                0494 Within the atmosphere, the time evolution of second turbulent moments is
                0495 explicitly modeled by representing the third moments in terms of the
                0496 first and second moments. This approach is known as a second-order
                0497 closure modeling. To simplify and streamline the computation of the
                0498 second moments, the level 2.5 assumption of Mellor and Yamada (1974) and :cite:`yam:77`
                0499 is employed, in which only the turbulent kinetic energy (TKE),
                0500 
0bad585a21 Navi*0501 .. math:: {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}
8679f9097b Jeff*0502 
                0503 is solved prognostically and the other second moments are solved
                0504 diagnostically. The prognostic equation for TKE allows the scheme to
                0505 simulate some of the transient and diffusive effects in the turbulence.
                0506 The TKE budget equation is solved numerically using an implicit backward
                0507 computation of the terms linear in :math:`q^2` and is written:
                0508 
                0509 .. math::
                0510 
0bad585a21 Navi*0511    {\dd{}{t} \left({{\h} q^2}\right)} - { \pp{}{z} \left[{ \frac{5}{3} {{\lambda}_1} q { \pp {}{z} 
                0512    \left({\h}q^2\right)} }\right]} =
8679f9097b Jeff*0513    {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}} 
                0514    { \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}}
                0515    - \frac{ q^3}{{\Lambda}_1} }
                0516 
                0517 where :math:`q` is the turbulent velocity, :math:`{u^{\prime}}`,
                0518 :math:`{v^{\prime}}`, :math:`{w^{\prime}}` and
                0519 :math:`{{\theta}^{\prime}}` are the fluctuating parts of the velocity
                0520 components and potential temperature, :math:`U` and :math:`V` are the
                0521 mean velocity components, :math:`{\Theta_0}^{-1}` is the coefficient of
                0522 thermal expansion, and :math:`{{\lambda}_1}` and :math:`{{\Lambda} _1}`
                0523 are constant multiples of the master length scale, :math:`\ell`, which
                0524 is designed to be a characteristic measure of the vertical structure of
                0525 the turbulent layers.
                0526 
                0527 The first term on the left-hand side represents the time rate of change
                0528 of TKE, and the second term is a representation of the triple
                0529 correlation, or turbulent transport term. The first three terms on the
                0530 right-hand side represent the sources of TKE due to shear and bouyancy,
                0531 and the last term on the right hand side is the dissipation of TKE.
                0532 
                0533 In the level 2.5 approach, the vertical fluxes of the scalars
                0534 :math:`\theta_v` and :math:`q` and the wind components :math:`u` and
                0535 :math:`v` are expressed in terms of the diffusion coefficients
                0536 :math:`K_h` and :math:`K_m`, respectively. In the statisically
                0537 realizable level 2.5 turbulence scheme of :cite:`helflab:88`, these diffusion coefficients
                0538 are expressed as
                0539 
                0540 .. math::
                0541 
                0542    K_h 
                0543     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
0bad585a21 Navi*0544    \\ \frac{ q^2 }{ q_{\rm eq} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
8679f9097b Jeff*0545 
                0546 and
                0547 
                0548 .. math::
                0549 
                0550    K_m
                0551     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}                
0bad585a21 Navi*0552    \\ \frac{ q^2 }{ q_{\rm eq} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
8679f9097b Jeff*0553 
0bad585a21 Navi*0554 where the subscript 'eq' refers to the value under conditions of
                0555 local equilibrium (obtained from the Level 2.0 Model), :math:`\ell` is
8679f9097b Jeff*0556 the master length scale related to the vertical structure of the
                0557 atmosphere, and :math:`S_M` and :math:`S_H` are functions of :math:`G_H`
                0558 and :math:`G_M`, the dimensionless buoyancy and wind shear parameters,
                0559 respectively. Both :math:`G_H` and :math:`G_M`, and their equilibrium
                0560 values :math:`G_{H_e}` and :math:`G_{M_e}`, are functions of the
                0561 Richardson number:
                0562 
                0563 .. math::
0bad585a21 Navi*0564    \textrm{RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
                0565    =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
8679f9097b Jeff*0566 
                0567 Negative values indicate unstable buoyancy and shear, small positive
0bad585a21 Navi*0568 values (<0.2) indicate dominantly unstable shear, and large
8679f9097b Jeff*0569 positive values indicate dominantly stable stratification.
                0570 
                0571 Turbulent eddy diffusion coefficients of momentum, heat and moisture in
                0572 the surface layer, which corresponds to the lowest GCM level (see *—
                0573 missing table —*), are calculated using stability-dependant functions
                0574 based on Monin-Obukhov theory:
                0575 
0bad585a21 Navi*0576 .. math:: {K_m} ({\rm surface}) = C_u \times u_* = C_D W_s
8679f9097b Jeff*0577 
                0578 and
                0579 
0bad585a21 Navi*0580 .. math:: {K_h} ({\rm surface}) =  C_t \times u_* = C_H W_s
8679f9097b Jeff*0581 
                0582 where :math:`u_*=C_uW_s` is the surface friction velocity, :math:`C_D`
                0583 is termed the surface drag coefficient, :math:`C_H` the heat transfer
                0584 coefficient, and :math:`W_s` is the magnitude of the surface layer wind.
                0585 
                0586 :math:`C_u` is the dimensionless exchange coefficient for momentum from
                0587 the surface layer similarity functions:
                0588 
                0589 .. math:: {C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
                0590 
                0591 where k is the Von Karman constant and :math:`\psi_m` is the surface
                0592 layer non-dimensional wind shear given by
                0593 
0bad585a21 Navi*0594 .. math:: \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}
8679f9097b Jeff*0595 
                0596 Here :math:`\zeta` is the non-dimensional stability parameter, and
                0597 :math:`\phi_m` is the similarity function of :math:`\zeta` which
                0598 expresses the stability dependance of the momentum gradient. The
                0599 functional form of :math:`\phi_m` is specified differently for stable
                0600 and unstable layers.
                0601 
                0602 :math:`C_t` is the dimensionless exchange coefficient for heat and
                0603 moisture from the surface layer similarity functions:
                0604 
                0605 .. math::
                0606 
                0607    {C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } =
                0608    -\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } =
                0609    \frac{ k }{ (\psi_{h} + \psi_{g}) }
                0610 
                0611 where :math:`\psi_h` is the surface layer non-dimensional temperature
                0612 gradient given by
                0613 
0bad585a21 Navi*0614 .. math:: \psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta}
8679f9097b Jeff*0615 
                0616 Here :math:`\phi_h` is the similarity function of :math:`\zeta`, which
                0617 expresses the stability dependance of the temperature and moisture
                0618 gradients, and is specified differently for stable and unstable layers
                0619 according to :cite:`helfschu:95`.
                0620 
                0621 :math:`\psi_g` is the non-dimensional temperature or moisture gradient
                0622 in the viscous sublayer, which is the mosstly laminar region between the
                0623 surface and the tops of the roughness elements, in which temperature and
                0624 moisture gradients can be quite large. Based on :cite:`yagkad:74`:
                0625 
                0626 .. math::
                0627 
0bad585a21 Navi*0628    \psi_{g} = \frac{ 0.55 ({\rm Pr}^{2/3} - 0.2) }{ \nu^{1/2} }
                0629    (h_{0}u_{*} - h_{0_{\rm ref}}u_{*_{\rm ref}})^{1/2}
8679f9097b Jeff*0630 
                0631 where Pr is the Prandtl number for air, :math:`\nu` is the molecular
                0632 viscosity, :math:`z_{0}` is the surface roughness length, and the
0bad585a21 Navi*0633 subscript 'ref' refers to a reference value. :math:`h_{0} = 30z_{0}`
                0634 with a maximum value over land of 0.01.
8679f9097b Jeff*0635 
                0636 The surface roughness length over oceans is is a function of the
                0637 surface-stress velocity,
                0638 
                0639 .. math:: {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*}
                0640 
                0641 where the constants are chosen to interpolate between the reciprocal
                0642 relation of :cite:`kondo:75` for weak winds, and the piecewise linear relation of :cite:`larpond:81` for
                0643 moderate to large winds. Roughness lengths over land are specified from
                0644 the climatology of :cite:`dorsell:89`.
                0645 
                0646 For an unstable surface layer, the stability functions, chosen to
                0647 interpolate between the condition of small values of :math:`\beta` and
                0648 the convective limit, are the KEYPS function :cite:`pano:73` for momentum, and its
                0649 generalization for heat and moisture:
                0650 
                0651 .. math::
                0652 
                0653    {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm} 
0bad585a21 Navi*0654    {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm}
8679f9097b Jeff*0655 
                0656 The function for heat and moisture assures non-vanishing heat and
                0657 moisture fluxes as the wind speed approaches zero.
                0658 
                0659 For a stable surface layer, the stability functions are the
                0660 observationally based functions of :cite:`clarke:70`, slightly modified for the momemtum
                0661 flux:
                0662 
                0663 .. math::
                0664 
                0665    {\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1
                0666    (1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm}
                0667    {\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}
0bad585a21 Navi*0668    (1+ 5 {{\zeta}_1}) }
8679f9097b Jeff*0669 
                0670 The moisture flux also depends on a specified evapotranspiration
                0671 coefficient, set to unity over oceans and dependant on the
                0672 climatological ground wetness over land.
                0673 
                0674 Once all the diffusion coefficients are calculated, the diffusion
                0675 equations are solved numerically using an implicit backward operator.
                0676 
                0677 Atmospheric Boundary Layer
                0678 ##########################
                0679 
                0680 The depth of the atmospheric boundary layer (ABL) is diagnosed by the
                0681 parameterization as the level at which the turbulent kinetic energy is
                0682 reduced to a tenth of its maximum near surface value. The vertical
                0683 structure of the ABL is explicitly resolved by the lowest few (3-8)
                0684 model layers.
                0685 
                0686 Surface Energy Budget
                0687 #####################
                0688 
                0689 The ground temperature equation is solved as part of the turbulence
                0690 package using a backward implicit time differencing scheme:
                0691 
0bad585a21 Navi*0692 .. math:: C_g\pp{T_g}{t} = R_{\rm sw} - R_{\rm lw} + Q_{\rm ice} - H - LE
8679f9097b Jeff*0693 
0bad585a21 Navi*0694 where :math:`R_{\rm sw}` is the net surface downward shortwave radiative
                0695 flux and :math:`R_{\rm lw}` is the net surface upward longwave radiative
8679f9097b Jeff*0696 flux.
                0697 
                0698 :math:`H` is the upward sensible heat flux, given by:
                0699 
                0700 .. math::
0bad585a21 Navi*0701    {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{\rm surface} - \theta_{\rm NLAY})
                0702    \hspace{1cm}\text{where}: \hspace{.2cm}C_H = C_u C_t
8679f9097b Jeff*0703 
                0704 where :math:`\rho` = the atmospheric density at the surface,
                0705 :math:`c_{p}` is the specific heat of air at constant pressure, and
                0706 :math:`\theta` represents the potential temperature of the surface and
                0707 of the lowest :math:`\sigma`-level, respectively.
                0708 
0bad585a21 Navi*0709 The upward latent heat flux, :math:`\textrm{LE}`, is given by
8679f9097b Jeff*0710 
                0711 .. math::
                0712 
0bad585a21 Navi*0713    \textrm{LE} =  \rho \beta L C_{H} W_s (q_{\rm surface} - q_{\rm NLAY})
                0714    \hspace{1cm}\text{where}: \hspace{.2cm}C_H = C_u C_t
8679f9097b Jeff*0715 
                0716 where :math:`\beta` is the fraction of the potential evapotranspiration
                0717 actually evaporated, L is the latent heat of evaporation, and
0bad585a21 Navi*0718 :math:`q_{\rm surface}` and :math:`q_{\rm NLAY}` are the specific humidity of
8679f9097b Jeff*0719 the surface and of the lowest :math:`\sigma`-level, respectively.
                0720 
0bad585a21 Navi*0721 The heat conduction through sea ice, :math:`Q_{\rm ice}`, is given by
8679f9097b Jeff*0722 
0bad585a21 Navi*0723 .. math:: {Q_{\rm ice}} = \frac{C_{\rm ti} }{ H_i} (T_i-T_g)
8679f9097b Jeff*0724 
0bad585a21 Navi*0725 where :math:`C_{\rm ti}` is the thermal conductivity of ice, :math:`H_i` is
                0726 the ice thickness, assumed to be 3 m where sea ice
8679f9097b Jeff*0727 is present, :math:`T_i` is 273 degrees Kelvin, and :math:`T_g` is the
                0728 surface temperature of the ice.
                0729 
                0730 :math:`C_g` is the total heat capacity of the ground, obtained by
                0731 solving a heat diffusion equation for the penetration of the diurnal
0bad585a21 Navi*0732 cycle into the ground (Blackadar 1977), and is given by:
8679f9097b Jeff*0733 
                0734 .. math::
                0735 
                0736    C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
0bad585a21 Navi*0737    \frac{86400}{2\pi} }
8679f9097b Jeff*0738 
                0739 Here, the thermal conductivity, :math:`\lambda`, is equal to
0bad585a21 Navi*0740 :math:`2\times10^{-3}` :math:`\frac{\text{ly}}{\text{sec}}\frac{\text{cm}}{\text{K}}`,
                0741 the angular velocity of the earth, :math:`\omega`, is
                0742 written as 86400 sec day\ :sup:`--1` divided by :math:`2 \pi`
                0743 radians day\ :sup:`--1`, and the expression for :math:`C_s`, the heat capacity per unit
8679f9097b Jeff*0744 volume at the surface, is a function of the ground wetness, :math:`W`.
                0745 
                0746 Land Surface Processes:
                0747 
                0748 Surface Type
                0749 ############
                0750 
                0751 The fizhi package surface Types are designated using the Koster-Suarez
                0752 :cite:`ks:91,ks:92` Land Surface Model (LSM) mosaic philosophy which allows multiple
                0753 “tiles”, or multiple surface types, in any one grid cell. The
                0754 Koster-Suarez LSM surface type classifications are shown in :numref:`tab_phys_pkg_fizhi_surface_type_designation`. The surface types and the percent of the grid cell
                0755 occupied by any surface type were derived from the surface
                0756 classification of :cite:`deftow:94`, and information about the location of permanent ice
                0757 was obtained from the classifications of :cite:`dorsell:89`. The surface type map for a
                0758 :math:`1^\circ` grid is shown in :numref:`fig_phys_pkg_fizhi_surftype`. The
                0759 determination of the land or sea category of surface type was made from
                0760 NCAR’s 10 minute by 10 minute Navy topography dataset, which includes
                0761 information about the percentage of water-cover at any point. The data
                0762 were averaged to the model’s grid resolutions, and any grid-box whose
                0763 averaged water percentage was :math:`\geq 60 \%` was defined as a water
                0764 point. The Land-Water designation was further modified subjectively to
                0765 ensure sufficient representation from small but isolated land and water
                0766 regions.
                0767 
                0768 .. table:: Surface Type Designation
                0769     :name: tab_phys_pkg_fizhi_surface_type_designation
                0770 
                0771     +--------+-----------------------------+
                0772     | Type   | Vegetation Designation      |
                0773     +========+=============================+
                0774     | 1      | Broadleaf Evergreen Trees   |
                0775     +--------+-----------------------------+
                0776     | 2      | Broadleaf Deciduous Trees   |
                0777     +--------+-----------------------------+
                0778     | 3      | Needleleaf Trees            |
                0779     +--------+-----------------------------+
                0780     | 4      | Ground Cover                |
                0781     +--------+-----------------------------+
                0782     | 5      | Broadleaf Shrubs            |
                0783     +--------+-----------------------------+
                0784     | 6      | Dwarf Trees (Tundra)        |
                0785     +--------+-----------------------------+
                0786     | 7      | Bare Soil                   |
                0787     +--------+-----------------------------+
                0788     | 8      | Desert (Bright)             |
                0789     +--------+-----------------------------+
                0790     | 9      | Glacier                     |
                0791     +--------+-----------------------------+
                0792     | 10     | Desert (Dark)               |
                0793     +--------+-----------------------------+
                0794     | 100    | Ocean                       |
                0795     +--------+-----------------------------+
                0796 
                0797 
                0798 
                0799 .. figure:: figs/surftype.*
                0800     :width: 70%
                0801     :align: center
                0802     :alt: surface type combinations
                0803     :name: fig_phys_pkg_fizhi_surftype
                0804 
                0805     Surface type combinations 
                0806 
                0807 
                0808 
                0809 Surface Roughness
                0810 #################
                0811 
                0812 The surface roughness length over oceans is computed iteratively with
                0813 the wind stress by the surface layer parameterization :cite:`helfschu:95`. It employs an
                0814 interpolation between the functions of :cite:`larpond:81` for high winds and of :cite:`kondo:75` for weak
                0815 winds.
                0816 
                0817 
                0818 Albedo
                0819 ######
                0820 
                0821 The surface albedo computation, described in , employs the “two stream”
                0822 approximation used in Sellers’ (1987) Simple Biosphere (SiB) Model which
                0823 distinguishes between the direct and diffuse albedos in the visible and
                0824 in the near infra-red spectral ranges. The albedos are functions of the
                0825 observed leaf area index (a description of the relative orientation of
                0826 the leaves to the sun), the greenness fraction, the vegetation type, and
                0827 the solar zenith angle. Modifications are made to account for the
                0828 presence of snow, and its depth relative to the height of the vegetation
                0829 elements.
                0830 
                0831 Gravity Wave Drag
                0832 #################
                0833 
                0834 The fizhi package employs the gravity wave drag scheme of :cite:`zhouetal:95`. This scheme
                0835 is a modified version of Vernekar et al. (1992), which was based on
                0836 Alpert et al. (1988) and Helfand et al. (1987). In this version, the
                0837 gravity wave stress at the surface is based on that derived by
                0838 Pierrehumbert (1986) and is given by:
                0839 
                0840 .. math:: 
0bad585a21 Navi*0841   |\vec{\tau}_{\rm sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right)
8679f9097b Jeff*0842 
                0843 
                0844 where :math:`F_r = N h /U` is the Froude number, :math:`N` is the *Brunt
                0845 - Visl* frequency, :math:`U` is the surface wind speed, :math:`h` is
                0846 the standard deviation of the sub-grid scale orography, and
                0847 :math:`\ell^*` is the wavelength of the monochromatic gravity wave in
                0848 the direction of the low-level wind. A modification introduced by Zhou
                0849 et al. allows for the momentum flux to escape through the top of the
                0850 model, although this effect is small for the current 70-level model. The
                0851 subgrid scale standard deviation is defined by :math:`h`, and is not
                0852 allowed to exceed 400 m.
                0853 
                0854 The effects of using this scheme within a GCM are shown in :cite:`taksz:96`. Experiments
                0855 using the gravity wave drag parameterization yielded significant and
                0856 beneficial impacts on both the time-mean flow and the transient
                0857 statistics of the a GCM climatology, and have eliminated most of the
                0858 worst dynamically driven biases in the a GCM simulation. An examination
                0859 of the angular momentum budget during climate runs indicates that the
                0860 resulting gravity wave torque is similar to the data-driven torque
                0861 produced by a data assimilation which was performed without gravity wave
                0862 drag. It was shown that the inclusion of gravity wave drag results in
                0863 large changes in both the mean flow and in eddy fluxes. The result is a
                0864 more accurate simulation of surface stress (through a reduction in the
                0865 surface wind strength), of mountain torque (through a redistribution of
                0866 mean sea-level pressure), and of momentum convergence (through a
                0867 reduction in the flux of westerly momentum by transient flow eddies).
                0868 
0bad585a21 Navi*0869 Boundary Conditions and other Input Data
                0870 ########################################
8679f9097b Jeff*0871 
                0872 Required fields which are not explicitly predicted or diagnosed during
                0873 model execution must either be prescribed internally or obtained from
                0874 external data sets. In the fizhi package these fields include: sea
                0875 surface temperature, sea ice estent, surface geopotential variance,
                0876 vegetation index, and the radiation-related background levels of: ozone,
                0877 carbon dioxide, and stratospheric moisture.
                0878 
                0879 Boundary condition data sets are available at the model’s resolutions
                0880 for either climatological or yearly varying conditions. Any frequency of
                0881 boundary condition data can be used in the fizhi package; however, the
                0882 current selection of data is summarized in :numref:`tab_phys_pkg_fizhi_inputs`. The
                0883 time mean values are interpolated during each model timestep to the
                0884 current time.
                0885 
                0886 .. table:: Boundary conditions and other input data used in the fizhi package. Also noted are the current years and frequencies available.
                0887     :name: tab_phys_pkg_fizhi_inputs
                0888 
                0889     +-----------------------------------------+-----------+-----------------------------+
                0890     | **Fizhi Input Datasets**                                                          |
                0891     +-----------------------------------------+-----------+-----------------------------+
                0892     | Sea Ice Extent                          | monthly   | 1979-current, climatology   |
                0893     +-----------------------------------------+-----------+-----------------------------+
                0894     | Sea Ice Extent                          | weekly    | 1982-current, climatology   |
                0895     +-----------------------------------------+-----------+-----------------------------+
                0896     | Sea Surface Temperature                 | monthly   | 1979-current, climatology   |
                0897     +-----------------------------------------+-----------+-----------------------------+
                0898     | Sea Surface Temperature                 | weekly    | 1982-current, climatology   |
                0899     +-----------------------------------------+-----------+-----------------------------+
                0900     | Zonally Averaged Upper-Level Moisture   | monthly   | climatology                 |
                0901     +-----------------------------------------+-----------+-----------------------------+
                0902     | Zonally Averaged Ozone Concentration    | monthly   | climatology                 |
                0903     +-----------------------------------------+-----------+-----------------------------+
                0904 
                0905 
                0906 Topography and Topography Variance
                0907 ##################################
                0908 
                0909 Surface geopotential heights are provided from an averaging of the Navy
                0910 10 minute by 10 minute dataset supplied by the National Center for
                0911 Atmospheric Research (NCAR) to the model’s grid resolution. The original
                0912 topography is first rotated to the proper grid-orientation which is
                0913 being run, and then averages the data to the model resolution.
                0914 
                0915 The standard deviation of the subgrid-scale topography is computed by
                0916 interpolating the 10 minute data to the model’s resolution and
                0917 re-interpolating back to the 10 minute by 10 minute resolution. The
                0918 sub-grid scale variance is constructed based on this smoothed dataset.
                0919 
                0920 
                0921 Upper Level Moisture
                0922 ####################
                0923 
                0924 The fizhi package uses climatological water vapor data above 100 mb from
                0925 the Stratospheric Aerosol and Gas Experiment (SAGE) as input into the
                0926 model’s radiation packages. The SAGE data is archived as monthly zonal
                0927 means at :math:`5^\circ` latitudinal resolution. The data is
                0928 interpolated to the model’s grid location and current time, and blended
                0929 with the GCM’s moisture data. Below 300 mb, the model’s moisture data is
                0930 used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, a
                0931 linear interpolation (in pressure) is performed using the data from SAGE
                0932 and the GCM.
                0933 
9ce7d74115 Jeff*0934 
                0935 .. _fizhi_diagnostics:
                0936 
8679f9097b Jeff*0937 Fizhi Diagnostics
                0938 +++++++++++++++++
                0939 
0bad585a21 Navi*0940 Fizhi Diagnostic Menu:
8679f9097b Jeff*0941     
                0942 +--------+----------------------------------+---------+--------------------------------------------------+
                0943 | NAME   |  UNITS                           |  LEVELS | DESCRIPTION                                      |
                0944 +--------+----------------------------------+---------+--------------------------------------------------+
                0945 | UFLUX  |  N m\ :sup:`--2`                 |  1      | Surface U-Wind Stress on the atmosphere          |
                0946 +--------+----------------------------------+---------+--------------------------------------------------+
                0947 | VFLUX  |  N m\ :sup:`--2`                 |  1      | Surface V-Wind Stress on the atmosphere          |
                0948 +--------+----------------------------------+---------+--------------------------------------------------+
                0949 | HFLUX  |  W m\ :sup:`--2`                 |  1      | Surface Flux of Sensible Heat                    |
                0950 +--------+----------------------------------+---------+--------------------------------------------------+
                0951 | EFLUX  |  W m\ :sup:`--2`                 |  1      | Surface Flux of Latent Heat                      |
                0952 +--------+----------------------------------+---------+--------------------------------------------------+
                0953 | QICE   |  W m\ :sup:`--2`                 |  1      | Heat Conduction through Sea-Ice                  |
                0954 +--------+----------------------------------+---------+--------------------------------------------------+
                0955 | RADLWG |  W m\ :sup:`--2`                 |  1      | Net upward LW flux at the ground                 |
                0956 +--------+----------------------------------+---------+--------------------------------------------------+
                0957 | RADSWG |  W m\ :sup:`--2`                 |  1      | Net downward SW flux at the ground               |
                0958 +--------+----------------------------------+---------+--------------------------------------------------+
                0959 | RI     |  dimensionless                   |  Nrphys | Richardson Number                                |
                0960 +--------+----------------------------------+---------+--------------------------------------------------+
                0961 | CT     |  dimensionless                   |  1      | Surface Drag coefficient for T and Q             |
                0962 +--------+----------------------------------+---------+--------------------------------------------------+
                0963 | CU     |  dimensionless                   |  1      | Surface Drag coefficient for U and V             |
                0964 +--------+----------------------------------+---------+--------------------------------------------------+
                0965 | ET     |  m\ :sup:`2` s\ :sup:`--1`       |  Nrphys | Diffusivity coefficient for T and Q              |
                0966 +--------+----------------------------------+---------+--------------------------------------------------+
                0967 | EU     |  m\ :sup:`2` s\ :sup:`--1`       |  Nrphys | Diffusivity coefficient for U and V              |
                0968 +--------+----------------------------------+---------+--------------------------------------------------+
                0969 | TURBU  |  m s\ :sup:`--1` day\ :sup:`--1` |  Nrphys | U-Momentum Changes due to Turbulence             |
                0970 +--------+----------------------------------+---------+--------------------------------------------------+
                0971 | TURBV  |  m s\ :sup:`--1` day\ :sup:`--1` |  Nrphys | V-Momentum Changes due to Turbulence             |
                0972 +--------+----------------------------------+---------+--------------------------------------------------+
                0973 | TURBT  |  deg day\ :sup:`--1`             |  Nrphys | Temperature Changes due to Turbulence            |
                0974 +--------+----------------------------------+---------+--------------------------------------------------+
                0975 | TURBQ  |  g/kg/day                        |  Nrphys | Specific Humidity Changes due to Turbulence      |
                0976 +--------+----------------------------------+---------+--------------------------------------------------+
                0977 | MOISTT |  deg day\ :sup:`--1`             |  Nrphys | Temperature Changes due to Moist Processes       |
                0978 +--------+----------------------------------+---------+--------------------------------------------------+
                0979 | MOISTQ |  g/kg/day                        |  Nrphys | Specific Humidity Changes due to Moist Processes |  
                0980 +--------+----------------------------------+---------+--------------------------------------------------+
                0981 | RADLW  |  deg day\ :sup:`--1`             |  Nrphys | Net Longwave heating rate for each level         |
                0982 +--------+----------------------------------+---------+--------------------------------------------------+
                0983 | RADSW  |  deg day\ :sup:`--1`             |  Nrphys | Net Shortwave heating rate for each level        |
                0984 +--------+----------------------------------+---------+--------------------------------------------------+
                0985 | PREACC |  mm/day                          |  1      | Total Precipitation                              |
                0986 +--------+----------------------------------+---------+--------------------------------------------------+
                0987 | PRECON |  mm/day                          |  1      | Convective Precipitation                         |
                0988 +--------+----------------------------------+---------+--------------------------------------------------+
                0989 | TUFLUX |  N m\ :sup:`--2`                 |  Nrphys | Turbulent Flux of U-Momentum                     |
                0990 +--------+----------------------------------+---------+--------------------------------------------------+
                0991 | TVFLUX |  N m\ :sup:`--2`                 |  Nrphys | Turbulent Flux of V-Momentum                     |
                0992 +--------+----------------------------------+---------+--------------------------------------------------+
                0993 | TTFLUX |  W m\ :sup:`--2`                 |  Nrphys | Turbulent Flux of Sensible Heat                  |
                0994 +--------+----------------------------------+---------+--------------------------------------------------+
                0995             
                0996 
                0997 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                0998 | NAME   |  UNITS              |  LEVELS | DESCRIPTION                                                                         |
                0999 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1000 | TQFLUX | W m\ :sup:`--2`     | Nrphys  | Turbulent Flux of Latent Heat                                                       |
                1001 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1002 | CN     | dimensionless       | 1       | Neutral Drag Coefficient                                                            |
                1003 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1004 | WINDS  | m s\ :sup:`--1`     | 1       | Surface Wind Speed                                                                  |
                1005 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1006 | DTSRF  | deg                 | 1       | Air/Surface virtual temperature difference                                          |
                1007 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1008 | TG     | deg                 | 1       | Ground temperature                                                                  |
                1009 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1010 | TS     | deg                 | 1       | Surface air temperature (Adiabatic from lowest model layer)                         |
                1011 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1012 | DTG    | deg                 | 1       | Ground temperature adjustment                                                       |
                1013 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1014 | QG     | g kg\ :sup:`--1`    | 1       | Ground specific humidity                                                            |
                1015 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1016 | QS     | g kg\ :sup:`--1`    | 1       | Saturation surface specific humidity                                                |
                1017 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1018 | TGRLW  | deg                 | 1       | Instantaneous ground temperature used as input to the Longwave radiation subroutine |
                1019 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1020 | ST4    | W m\ :sup:`--2`     | 1       | Upward Longwave flux at the ground (:math:`\sigma T^4`)                             |
                1021 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1022 | OLR    | W m\ :sup:`--2`     | 1       | Net upward Longwave flux at the top of the model                                    |
                1023 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1024 | OLRCLR | W m\ :sup:`--2`     | 1       | Net upward clearsky Longwave flux at the top of the model                           |
                1025 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1026 | LWGCLR | W m\ :sup:`--2`     | 1       | Net upward clearsky Longwave flux at the ground                                     |
                1027 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1028 | LWCLR  | deg day\ :sup:`--1` | Nrphys  | Net clearsky Longwave heating rate for each level                                   |
                1029 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1030 | TLW    | deg                 | Nrphys  | Instantaneous temperature used as input to the Longwave radiation subroutine        |
                1031 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1032 | SHLW   | g g\ :sup:`--1`     | Nrphys  | Instantaneous specific humidity used as input to the Longwave radiation subroutine  |
                1033 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1034 | OZLW   | g g\ :sup:`--1`     | Nrphys  | Instantaneous ozone used as input to the Longwave radiation subroutine              |
                1035 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1036 | CLMOLW | :math:`0-1`         | Nrphys  | Maximum overlap cloud fraction used in the Longwave radiation subroutine            |
                1037 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1038 | CLDTOT | :math:`0-1`         | Nrphys  | Total cloud fraction used in the Longwave and Shortwave radiation subroutines       |
                1039 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1040 | LWGDOWN| W m\ :sup:`--2`     | 1       | Downwelling Longwave radiation at the ground                                        |
                1041 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1042 | GWDT   | deg day\ :sup:`--1` | Nrphys  | Temperature tendency due to Gravity Wave Drag                                       |
                1043 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1044 | RADSWT | W m\ :sup:`--2`     | 1       | Incident Shortwave radiation at the top of the atmosphere                           |
                1045 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1046 | TAUCLD | per 100 mb          | Nrphys  | Counted Cloud Optical Depth (non-dimensional) per 100 mb                            |
                1047 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1048 | TAUCLDC| Number              | Nrphys  | Cloud Optical Depth Counter                                                         |
                1049 +--------+---------------------+---------+-------------------------------------------------------------------------------------+
                1050 
                1051 +--------+-----------------+----------+---------------------------------------------------------------+
                1052 | NAME   | UNITS           | LEVELS   | Description                                                   |
                1053 +--------+-----------------+----------+---------------------------------------------------------------+
                1054 | CLDLOW | 0-1             | Nrphys   | Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)                |
                1055 +--------+-----------------+----------+---------------------------------------------------------------+
                1056 | EVAP   | mm/day          | 1        | Surface evaporation                                           |
                1057 +--------+-----------------+----------+---------------------------------------------------------------+
                1058 | DPDT   | hPa/day         | 1        | Surface Pressure time-tendency                                |
                1059 +--------+-----------------+----------+---------------------------------------------------------------+
                1060 | UAVE   | m/sec           | Nrphys   | Average U-Wind                                                |
                1061 +--------+-----------------+----------+---------------------------------------------------------------+
                1062 | VAVE   | m/sec           | Nrphys   | Average V-Wind                                                |
                1063 +--------+-----------------+----------+---------------------------------------------------------------+
                1064 | TAVE   | deg             | Nrphys   | Average Temperature                                           |
                1065 +--------+-----------------+----------+---------------------------------------------------------------+
                1066 | QAVE   | g/kg            | Nrphys   | Average Specific Humidity                                     |
                1067 +--------+-----------------+----------+---------------------------------------------------------------+
                1068 | OMEGA  | hPa/day         | Nrphys   | Vertical Velocity                                             |
                1069 +--------+-----------------+----------+---------------------------------------------------------------+
                1070 | DUDT   | m/sec/day       | Nrphys   | Total U-Wind tendency                                         |
                1071 +--------+-----------------+----------+---------------------------------------------------------------+
                1072 | DVDT   | m/sec/day       | Nrphys   | Total V-Wind tendency                                         |
                1073 +--------+-----------------+----------+---------------------------------------------------------------+
                1074 | DTDT   | deg/day         | Nrphys   | Total Temperature tendency                                    |
                1075 +--------+-----------------+----------+---------------------------------------------------------------+
                1076 | DQDT   | g/kg/day        | Nrphys   | Total Specific Humidity tendency                              |
                1077 +--------+-----------------+----------+---------------------------------------------------------------+
                1078 | VORT   | 10^{-4}/sec     | Nrphys   | Relative Vorticity                                            |
                1079 +--------+-----------------+----------+---------------------------------------------------------------+
                1080 | DTLS   | deg/day         | Nrphys   | Temperature tendency due to Stratiform Cloud Formation        |
                1081 +--------+-----------------+----------+---------------------------------------------------------------+
                1082 | DQLS   | g/kg/day        | Nrphys   | Specific Humidity tendency due to Stratiform Cloud Formation  |
                1083 +--------+-----------------+----------+---------------------------------------------------------------+
                1084 | USTAR  | m/sec           | 1        | Surface USTAR wind                                            |
                1085 +--------+-----------------+----------+---------------------------------------------------------------+
                1086 | Z0     | m               | 1        | Surface roughness                                             |
                1087 +--------+-----------------+----------+---------------------------------------------------------------+
                1088 | FRQTRB | 0-1             | Nrphys-1 | Frequency of Turbulence                                       |
                1089 +--------+-----------------+----------+---------------------------------------------------------------+
                1090 | PBL    | mb              | 1        | Planetary Boundary Layer depth                                |
                1091 +--------+-----------------+----------+---------------------------------------------------------------+
                1092 | SWCLR  | deg/day         | Nrphys   | Net clearsky Shortwave heating rate for each level            |
                1093 +--------+-----------------+----------+---------------------------------------------------------------+
                1094 | OSR    | W m\ :sup:`--2` | 1        | Net downward Shortwave flux at the top of the model           |
                1095 +--------+-----------------+----------+---------------------------------------------------------------+
                1096 | OSRCLR | W m\ :sup:`--2` | 1        | Net downward clearsky Shortwave flux at the top of the model  |
                1097 +--------+-----------------+----------+---------------------------------------------------------------+
                1098 | CLDMAS | kg / m^2        | Nrphys   | Convective cloud mass flux                                    |
                1099 +--------+-----------------+----------+---------------------------------------------------------------+
                1100 | UAVE   | m/sec           | Nrphys   | Time-averaged :math:`u`-Wind                                  |
                1101 +--------+-----------------+----------+---------------------------------------------------------------+
                1102 
                1103 
                1104 
                1105 +--------+-------------------+--------+---------------------------------------------------------------+
                1106 | NAME   | UNITS             | LEVELS | DESCRIPTION                                                   |
                1107 +--------+-------------------+--------+---------------------------------------------------------------+
                1108 | VAVE   | m/sec             | Nrphys | Time-averaged :math:`v`-Wind                                  |
                1109 +--------+-------------------+--------+---------------------------------------------------------------+
                1110 | TAVE   | deg               | Nrphys | Time-averaged Temperature`                                    |
                1111 +--------+-------------------+--------+---------------------------------------------------------------+
                1112 | QAVE   | g/g               | Nrphys | Time-averaged Specific Humidity                               |
                1113 +--------+-------------------+--------+---------------------------------------------------------------+
                1114 | RFT    | deg/day           | Nrphys | Temperature tendency due Rayleigh Friction                    |
                1115 +--------+-------------------+--------+---------------------------------------------------------------+
                1116 | PS     | mb                | 1      | Surface Pressure                                              |
                1117 +--------+-------------------+--------+---------------------------------------------------------------+
                1118 | QQAVE  | (m/sec)\ :sup:`2` | Nrphys | Time-averaged Turbulent Kinetic Energy                        |
                1119 +--------+-------------------+--------+---------------------------------------------------------------+
                1120 | SWGCLR | W m\ :sup:`--2`   | 1      | Net downward clearsky Shortwave flux at the ground            |
                1121 +--------+-------------------+--------+---------------------------------------------------------------+
                1122 | PAVE   | mb                | 1      | Time-averaged Surface Pressure                                |
                1123 +--------+-------------------+--------+---------------------------------------------------------------+
                1124 | DIABU  | m/sec/day         | Nrphys | Total Diabatic forcing on :math:`u`-Wind                      |
                1125 +--------+-------------------+--------+---------------------------------------------------------------+
                1126 | DIABV  | m/sec/day         | Nrphys | Total Diabatic forcing on :math:`v`-Wind                      |
                1127 +--------+-------------------+--------+---------------------------------------------------------------+
                1128 | DIABT  | deg/day           | Nrphys | Total Diabatic forcing on Temperature                         |
                1129 +--------+-------------------+--------+---------------------------------------------------------------+
                1130 | DIABQ  | g/kg/day          | Nrphys | Total Diabatic forcing on Specific Humidity                   |
                1131 +--------+-------------------+--------+---------------------------------------------------------------+
                1132 | RFU    | m/sec/day         | Nrphys | U-Wind tendency due to Rayleigh Friction                      |
                1133 +--------+-------------------+--------+---------------------------------------------------------------+
                1134 | RFV    | m/sec/day         | Nrphys | V-Wind tendency due to Rayleigh Friction                      |
                1135 +--------+-------------------+--------+---------------------------------------------------------------+
                1136 | GWDU   | m/sec/day         | Nrphys | U-Wind tendency due to Gravity Wave Drag                      |
                1137 +--------+-------------------+--------+---------------------------------------------------------------+
                1138 | GWDU   | m/sec/day         | Nrphys | V-Wind tendency due to Gravity Wave Drag                      |
                1139 +--------+-------------------+--------+---------------------------------------------------------------+
                1140 | GWDUS  | N m\ :sup:`--2`   | 1      | U-Wind Gravity Wave Drag Stress at Surface                    |
                1141 +--------+-------------------+--------+---------------------------------------------------------------+
                1142 | GWDVS  | N m\ :sup:`--2`   | 1      | V-Wind Gravity Wave Drag Stress at Surface                    |
                1143 +--------+-------------------+--------+---------------------------------------------------------------+
                1144 | GWDUT  | N m\ :sup:`--2`   | 1      | U-Wind Gravity Wave Drag Stress at Top                        |
                1145 +--------+-------------------+--------+---------------------------------------------------------------+
                1146 | GWDVT  | N m\ :sup:`--2`   | 1      | V-Wind Gravity Wave Drag Stress at Top                        |
                1147 +--------+-------------------+--------+---------------------------------------------------------------+
                1148 | LZRAD  | mg/kg             | Nrphys | Estimated Cloud Liquid Water used in Radiation                |
                1149 +--------+-------------------+--------+---------------------------------------------------------------+
                1150 
                1151 +--------+-------------------+--------+-----------------------------------------------------+
                1152 | NAME   | UNITS             | LEVELS | DESCRIPTION                                         |
                1153 +--------+-------------------+--------+-----------------------------------------------------+
                1154 | SLP    | mb                | 1      | Time-averaged Sea-level Pressure                    |
                1155 +--------+-------------------+--------+-----------------------------------------------------+
                1156 | CLDFRC | 0-1               | 1      | Total Cloud Fraction                                |
                1157 +--------+-------------------+--------+-----------------------------------------------------+
                1158 | TPW    | gm cm\ :sup:`--2` | 1      | Precipitable water                                  |
                1159 +--------+-------------------+--------+-----------------------------------------------------+
                1160 | U2M    | m/sec             | 1      | U-Wind at 2 meters                                  |
                1161 +--------+-------------------+--------+-----------------------------------------------------+
                1162 | V2M    | m/sec             | 1      | V-Wind at 2 meters                                  |
                1163 +--------+-------------------+--------+-----------------------------------------------------+
                1164 | T2M    | deg               | 1      | Temperature at 2 meters                             |
                1165 +--------+-------------------+--------+-----------------------------------------------------+
                1166 | Q2M    | g/kg              | 1      | Specific Humidity at 2 meters                       |
                1167 +--------+-------------------+--------+-----------------------------------------------------+
                1168 | U10M   | m/sec             | 1      | U-Wind at 10 meters                                 |
                1169 +--------+-------------------+--------+-----------------------------------------------------+
                1170 | V10M   | m/sec             | 1      | V-Wind at 10 meters                                 |
                1171 +--------+-------------------+--------+-----------------------------------------------------+
                1172 | T10M   | deg               | 1      | Temperature at 10 meters                            |
                1173 +--------+-------------------+--------+-----------------------------------------------------+
                1174 | Q10M   | g/kg              | 1      | Specific Humidity at 10 meters                      |
                1175 +--------+-------------------+--------+-----------------------------------------------------+
                1176 | DTRAIN | kg m\ :sup:`--2`  | Nrphys | Detrainment Cloud Mass Flux                         |
                1177 +--------+-------------------+--------+-----------------------------------------------------+
                1178 | QFILL  | g/kg/day          | Nrphys | Filling of negative specific humidity               |
                1179 +--------+-------------------+--------+-----------------------------------------------------+
                1180 | DTCONV | deg/sec           | Nr     | Temp Change due to Convection                       |
                1181 +--------+-------------------+--------+-----------------------------------------------------+
                1182 | DQCONV | g/kg/sec          | Nr     | Specific Humidity Change due to Convection          |
                1183 +--------+-------------------+--------+-----------------------------------------------------+
                1184 | RELHUM | percent           | Nr     | Relative Humidity                                   |
                1185 +--------+-------------------+--------+-----------------------------------------------------+
                1186 | PRECLS | g/m^2/sec         | 1      | Large Scale Precipitation                           |
                1187 +--------+-------------------+--------+-----------------------------------------------------+
                1188 | ENPREC | J/g               | 1      | Energy of Precipitation (snow, rain Temp)           |
                1189 +--------+-------------------+--------+-----------------------------------------------------+
                1190 
                1191 
                1192 Fizhi Diagnostic Description
                1193 ++++++++++++++++++++++++++++
                1194 
                1195 In this section we list and describe the diagnostic quantities available
                1196 within the GCM. The diagnostics are listed in the order that they appear
                1197 in the Diagnostic Menu, Section [sec:pkg:fizhi:diagnostics]. In all
                1198 cases, each diagnostic as currently archived on the output datasets is
                1199 time-averaged over its diagnostic output frequency:
                1200 
                1201 .. math:: {\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t)
                1202 
                1203 where :math:`TTOT = \frac{ {\bf NQDIAG} }{\Delta t}`, **NQDIAG** is the
                1204 output frequency of the diagnostic, and :math:`\Delta t` is the timestep
                1205 over which the diagnostic is updated.
                1206 
                1207 Surface Zonal Wind Stress on the Atmosphere (:math:`Newton/m^2`)
                1208 ################################################################
                1209 
                1210 The zonal wind stress is the turbulent flux of zonal momentum from the
                1211 surface.
                1212 
                1213 .. math:: {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
                1214 
                1215 where :math:`\rho` = the atmospheric density at the surface,
                1216 :math:`C_{D}` is the surface drag coefficient, :math:`C_u` is the
                1217 dimensionless surface exchange coefficient for momentum (see diagnostic
                1218 number 10), :math:`W_s` is the magnitude of the surface layer wind, and
                1219 :math:`u` is the zonal wind in the lowest model layer.
                1220 
                1221 Surface Meridional Wind Stress on the Atmosphere (:math:`Newton/m^2`)
                1222 ######################################################################
                1223 
                1224 The meridional wind stress is the turbulent flux of meridional
                1225 momentum from the surface.
                1226 
                1227 .. math:: {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
                1228 
                1229 where :math:`\rho` = the atmospheric density at the surface,
                1230 :math:`C_{D}` is the surface drag coefficient, :math:`C_u` is the
                1231 dimensionless surface exchange coefficient for momentum (see diagnostic
                1232 number 10), :math:`W_s` is the magnitude of the surface layer wind, and
                1233 :math:`v` is the meridional wind in the lowest model layer.
                1234 
                1235 Surface Flux of Sensible Heat (W m\ :sup:`--2`)
                1236 ################################################
                1237 
                1238 The turbulent flux of sensible heat from the surface to the atmosphere
                1239 is a function of the gradient of virtual potential temperature and the
                1240 eddy exchange coefficient:
                1241 
                1242 .. math::
                1243 
0bad585a21 Navi*1244    {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{\rm surface} - \theta_{Nrphys})
8679f9097b Jeff*1245    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
                1246 
                1247 where :math:`\rho` = the atmospheric density at the surface,
                1248 :math:`c_{p}` is the specific heat of air, :math:`C_{H}` is the
                1249 dimensionless surface heat transfer coefficient, :math:`W_s` is the
                1250 magnitude of the surface layer wind, :math:`C_u` is the dimensionless
                1251 surface exchange coefficient for momentum (see diagnostic number 10),
                1252 :math:`C_t` is the dimensionless surface exchange coefficient for heat
                1253 and moisture (see diagnostic number 9), and :math:`\theta` is the
                1254 potential temperature at the surface and at the bottom model level.
                1255 
                1256 Surface Flux of Latent Heat (:math:`Watts/m^2`)
                1257 ###############################################
                1258 
                1259 The turbulent flux of latent heat from the surface to the atmosphere
                1260 is a function of the gradient of moisture, the potential
                1261 evapotranspiration fraction and the eddy exchange coefficient:
                1262 
                1263 .. math::
                1264 
0bad585a21 Navi*1265    {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{\rm surface} - q_{Nrphys})
8679f9097b Jeff*1266    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
                1267 
                1268 where :math:`\rho` = the atmospheric density at the surface,
                1269 :math:`\beta` is the fraction of the potential evapotranspiration
                1270 actually evaporated, L is the latent heat of evaporation, :math:`C_{H}`
                1271 is the dimensionless surface heat transfer coefficient, :math:`W_s` is
                1272 the magnitude of the surface layer wind, :math:`C_u` is the
                1273 dimensionless surface exchange coefficient for momentum (see diagnostic
                1274 number 10), :math:`C_t` is the dimensionless surface exchange
                1275 coefficient for heat and moisture (see diagnostic number 9), and
0bad585a21 Navi*1276 :math:`q_{\rm surface}` and :math:`q_{Nrphys}` are the specific humidity at
8679f9097b Jeff*1277 the surface and at the bottom model level, respectively.
                1278 
                1279 Heat Conduction Through Sea Ice (:math:`Watts/m^2`)
                1280 ###################################################
                1281 
                1282 Over sea ice there is an additional source of energy at the surface due
                1283 to the heat conduction from the relatively warm ocean through the sea
                1284 ice. The heat conduction through sea ice represents an additional energy
                1285 source term for the ground temperature equation.
                1286 
                1287 .. math:: {\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g)
                1288 
                1289 where :math:`C_{ti}` is the thermal conductivity of ice, :math:`H_i` is
                1290 the ice thickness, assumed to be :math:`3 \hspace{.1cm} m` where sea ice
                1291 is present, :math:`T_i` is 273 degrees Kelvin, and :math:`T_g` is the
                1292 temperature of the sea ice.
                1293 
                1294 NOTE: QICE is not available through model version 5.3, but is
                1295 available in subsequent versions.
                1296 
                1297 
                1298 Net upward Longwave Flux at the surface (:math:`Watts/m^2`)
                1299 ###########################################################
                1300 
                1301 .. math::
                1302 
                1303    \begin{aligned}
                1304    {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
                1305                 & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow\end{aligned}
                1306 
                1307 where Nrphys+1 indicates the lowest model edge-level, or
                1308 :math:`p = p_{surf}`. :math:`F_{LW}^\uparrow` is the upward Longwave
                1309 flux and :math:`F_{LW}^\downarrow` is the downward Longwave flux.
                1310 
                1311 
                1312 Net downard shortwave Flux at the surface (:math:`Watts/m^2`)
                1313 #############################################################
                1314 
                1315 .. math::
                1316 
                1317    \begin{aligned}
                1318    {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
                1319                 & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow\end{aligned}
                1320 
                1321 where Nrphys+1 indicates the lowest model edge-level, or
                1322 :math:`p = p_{surf}`. :math:`F_{SW}^\downarrow` is the downward
                1323 Shortwave flux and :math:`F_{SW}^\uparrow` is the upward Shortwave flux.
                1324 
                1325 Richardson number (:math:`dimensionless`)
                1326 #########################################
                1327 
                1328 The non-dimensional stability indicator is the ratio of the buoyancy
                1329 to the shear:
                1330 
                1331 .. math::
                1332 
                1333    {\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
                1334     =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
                1335 
                1336 where we used the hydrostatic equation:
                1337 
                1338 .. math:: {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
                1339 
                1340 Negative values indicate unstable buoyancy **AND** shear, small positive
                1341 values (:math:`<0.4`) indicate dominantly unstable shear, and large
                1342 positive values indicate dominantly stable stratification.
                1343 
                1344 CT - Surface Exchange Coefficient for Temperature and Moisture (dimensionless)
                1345 ###############################################################################
                1346 
                1347 The surface exchange coefficient is obtained from the similarity
                1348 functions for the stability dependant flux profile relationships:
                1349 
                1350 .. math::
                1351 
                1352    {\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } = 
                1353    -\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } = 
                1354    \frac{ k }{ (\psi_{h} + \psi_{g}) }
                1355 
                1356 where :math:`\psi_h` is the surface layer non-dimensional temperature
                1357 change and :math:`\psi_g` is the viscous sublayer non-dimensional
                1358 temperature or moisture change:
                1359 
                1360 .. math::
                1361 
                1362    \psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and 
                1363    \hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} } 
                1364    (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
                1365 
                1366 and: :math:`h_{0} = 30z_{0}` with a maximum value over land of 0.01
                1367 
                1368 :math:`\phi_h` is the similarity function of :math:`\zeta`, which
                1369 expresses the stability dependance of the temperature and moisture
                1370 gradients, specified differently for stable and unstable layers
                1371 according to . k is the Von Karman constant, :math:`\zeta` is the
                1372 non-dimensional stability parameter, Pr is the Prandtl number for air,
                1373 :math:`\nu` is the molecular viscosity, :math:`z_{0}` is the surface
                1374 roughness length, :math:`u_*` is the surface stress velocity (see
                1375 diagnostic number 67), and the subscript ref refers to a reference
                1376 value.
                1377 
                1378 CU - Surface Exchange Coefficient for Momentum (dimensionless)
                1379 ##############################################################
                1380 
                1381 The surface exchange coefficient is obtained from the similarity
                1382 functions for the stability dependant flux profile relationships:
                1383 
                1384 .. math:: {\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }
                1385 
                1386 where :math:`\psi_m` is the surface layer non-dimensional wind shear:
                1387 
                1388 .. math:: \psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}
                1389 
                1390 :math:`\phi_m` is the similarity function of :math:`\zeta`, which
                1391 expresses the stability dependance of the temperature and moisture
                1392 gradients, specified differently for stable and unstable layers
                1393 according to . k is the Von Karman constant, :math:`\zeta` is the
                1394 non-dimensional stability parameter, :math:`u_*` is the surface stress
                1395 velocity (see diagnostic number 67), and :math:`W_s` is the magnitude of
                1396 the surface layer wind.
                1397 
                1398 ET - Diffusivity Coefficient for Temperature and Moisture (m^2/sec) 
                1399 ###################################################################
                1400 
                1401 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the
                1402 turbulent heat or moisture flux for the atmosphere above the surface
                1403 layer can be expressed as a turbulent diffusion coefficient :math:`K_h`
                1404 times the negative of the gradient of potential temperature or moisture.
                1405 In the :cite:`helflab:88` adaptation of this closure, :math:`K_h` takes the form:
                1406 
                1407 .. math::
                1408 
                1409    {\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} } 
                1410     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
                1411    \\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
                1412 
                1413 where :math:`q` is the turbulent velocity, or
                1414 :math:`\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} 
                1415 energy}`, :math:`q_e` is the turbulence velocity derived from the more
                1416 simple level 2.0 model, which describes equilibrium turbulence,
                1417 :math:`\ell` is the master length scale related to the layer depth,
                1418 :math:`S_H` is a function of :math:`G_H` and :math:`G_M`, the
                1419 dimensionless buoyancy and wind shear parameters, respectively, or a
                1420 function of :math:`G_{H_e}` and :math:`G_{M_e}`, the equilibrium
                1421 dimensionless buoyancy and wind shear parameters. Both :math:`G_H` and
                1422 :math:`G_M`, and their equilibrium values :math:`G_{H_e}` and
                1423 :math:`G_{M_e}`, are functions of the Richardson number.
                1424 
                1425 For the detailed equations and derivations of the modified level 2.5
                1426 closure scheme, see :cite:`helflab:88`.
                1427 
                1428 In the surface layer, :math:`{\bf {ET}}` is the exchange coefficient
                1429 for heat and moisture, in units of :math:`m/sec`, given by:
                1430 
                1431 .. math:: {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s
                1432 
                1433 where :math:`C_t` is the dimensionless exchange coefficient for heat and
                1434 moisture from the surface layer similarity functions (see diagnostic
                1435 number 9), :math:`u_*` is the surface friction velocity (see diagnostic
                1436 number 67), :math:`C_H` is the heat transfer coefficient, and
                1437 :math:`W_s` is the magnitude of the surface layer wind.
                1438 
                1439 
                1440 EU - Diffusivity Coefficient for Momentum (m^2/sec)
                1441 ###################################################
                1442 
                1443 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the
                1444 turbulent heat momentum flux for the atmosphere above the surface layer
                1445 can be expressed as a turbulent diffusion coefficient :math:`K_m` times
                1446 the negative of the gradient of the u-wind. In the :cite:`helflab:88` adaptation of this
                1447 closure, :math:`K_m` takes the form:
                1448 
                1449 .. math::
                1450 
                1451    {\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} }
                1452     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
                1453    \\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
                1454 
                1455 where :math:`q` is the turbulent velocity, or
                1456 :math:`\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
                1457 energy}`, :math:`q_e` is the turbulence velocity derived from the more
                1458 simple level 2.0 model, which describes equilibrium turbulence,
                1459 :math:`\ell` is the master length scale related to the layer depth,
                1460 :math:`S_M` is a function of :math:`G_H` and :math:`G_M`, the
                1461 dimensionless buoyancy and wind shear parameters, respectively, or a
                1462 function of :math:`G_{H_e}` and :math:`G_{M_e}`, the equilibrium
                1463 dimensionless buoyancy and wind shear parameters. Both :math:`G_H` and
                1464 :math:`G_M`, and their equilibrium values :math:`G_{H_e}` and
                1465 :math:`G_{M_e}`, are functions of the Richardson number.
                1466 
                1467 For the detailed equations and derivations of the modified level 2.5
                1468 closure scheme, see :cite:`helflab:88`.
                1469 
                1470 In the surface layer, :math:`{\bf {EU}}` is the exchange coefficient
                1471 for momentum, in units of :math:`m/sec`, given by:
                1472 
                1473 .. math:: {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
                1474 
                1475 where :math:`C_u` is the dimensionless exchange coefficient for momentum
                1476 from the surface layer similarity functions (see diagnostic number 10),
                1477 :math:`u_*` is the surface friction velocity (see diagnostic number 67),
                1478 :math:`C_D` is the surface drag coefficient, and :math:`W_s` is the
                1479 magnitude of the surface layer wind.
                1480 
                1481 
                1482 
                1483 TURBU - Zonal U-Momentum changes due to Turbulence (m/sec/day) 
                1484 ##############################################################
                1485 
                1486 The tendency of U-Momentum due to turbulence is written:
                1487 
                1488 .. math::
                1489 
0bad585a21 Navi*1490    {\bf TURBU} = {\pp{u}{t}}_{\rm turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
8679f9097b Jeff*1491     = {\pp{}{z} }{(K_m \pp{u}{z})}
                1492 
                1493 The Helfand and Labraga level 2.5 scheme models the turbulent flux of
                1494 u-momentum in terms of :math:`K_m`, and the equation has the form of a
                1495 diffusion equation.
                1496 
                1497 TURBV - Meridional V-Momentum changes due to Turbulence (m/sec/day) 
                1498 ###################################################################
                1499 
                1500 The tendency of V-Momentum due to turbulence is written:
                1501 
                1502 .. math::
                1503 
0bad585a21 Navi*1504    {\bf TURBV} = {\pp{v}{t}}_{\rm turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
8679f9097b Jeff*1505     = {\pp{}{z} }{(K_m \pp{v}{z})}
                1506 
                1507 The Helfand and Labraga level 2.5 scheme models the turbulent flux of
                1508 v-momentum in terms of :math:`K_m`, and the equation has the form of a
                1509 diffusion equation.
                1510 
                1511 
                1512 TURBT - Temperature changes due to Turbulence (deg/day) 
                1513 #######################################################
                1514 
                1515 The tendency of temperature due to turbulence is written:
                1516 
                1517 .. math::
                1518 
0bad585a21 Navi*1519    {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{\rm turb} = 
8679f9097b Jeff*1520    P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
                1521     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
                1522 
                1523 The Helfand and Labraga level 2.5 scheme models the turbulent flux of
                1524 temperature in terms of :math:`K_h`, and the equation has the form of a
                1525 diffusion equation.
                1526 
                1527 
                1528 TURBQ - Specific Humidity changes due to Turbulence (g/kg/day) 
                1529 ###############################################################
                1530 
                1531 The tendency of specific humidity due to turbulence is written:
                1532 
                1533 .. math::
                1534 
0bad585a21 Navi*1535    {\bf TURBQ} = {\pp{q}{t}}_{\rm turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
8679f9097b Jeff*1536     = {\pp{}{z} }{(K_h \pp{q}{z})}
                1537 
                1538 The Helfand and Labraga level 2.5 scheme models the turbulent flux of
                1539 temperature in terms of :math:`K_h`, and the equation has the form of a
                1540 diffusion equation.
                1541 
                1542 
                1543 MOISTT - Temperature Changes Due to Moist Processes (deg/day) 
                1544 #############################################################
                1545 
                1546 .. math:: {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
                1547 
                1548 where:
                1549 
                1550 .. math::
                1551 
                1552    \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i 
                1553    \hspace{.4cm} and 
                1554    \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q)
                1555 
                1556  and
                1557 
                1558 .. math:: \Gamma_s = g \eta \pp{s}{p}
                1559 
                1560 The subscript :math:`c` refers to convective processes, while the
                1561 subscript :math:`ls` refers to large scale precipitation processes, or
                1562 supersaturation rain. The summation refers to contributions from each
                1563 cloud type called by RAS. The dry static energy is given as :math:`s`,
                1564 the convective cloud base mass flux is given as :math:`m_B`, and the
                1565 cloud entrainment is given as :math:`\eta`, which are explicitly defined
                1566 in :numref:`para_phys_pkg_fizhi_mc`, the description of the convective
                1567 parameterization. The fractional adjustment, or relaxation parameter,
                1568 for each cloud type is given as :math:`\alpha`, while :math:`R` is the
                1569 rain re-evaporation adjustment.
                1570 
                1571 MOISTQ - Specific Humidity Changes Due to Moist Processes (g/kg/day)
                1572 ####################################################################
                1573 
                1574 .. math:: {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
                1575 
                1576 where:
                1577 
                1578 .. math::
                1579 
                1580    \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i 
                1581    \hspace{.4cm} and 
                1582    \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
                1583 
                1584 and
                1585 
                1586 .. math:: \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
                1587 
                1588 The subscript :math:`c` refers to convective processes, while the
                1589 subscript :math:`ls` refers to large scale precipitation processes, or
                1590 supersaturation rain. The summation refers to contributions from each
                1591 cloud type called by RAS. The dry static energy is given as :math:`s`,
                1592 the moist static energy is given as :math:`h`, the convective cloud base
                1593 mass flux is given as :math:`m_B`, and the cloud entrainment is given as
                1594 :math:`\eta`, which are explicitly defined in :numref:`para_phys_pkg_fizhi_mc`,
                1595 the description of the convective parameterization. The fractional
                1596 adjustment, or relaxation parameter, for each cloud type is given as
                1597 :math:`\alpha`, while :math:`R` is the rain re-evaporation adjustment.
                1598 
                1599 
                1600 RADLW - Heating Rate due to Longwave Radiation (deg/day)
                1601 ########################################################
                1602 
                1603 The net longwave heating rate is calculated as the vertical divergence
                1604 of the net terrestrial radiative fluxes. Both the clear-sky and
                1605 cloudy-sky longwave fluxes are computed within the longwave routine. The
                1606 subroutine calculates the clear-sky flux, :math:`F^{clearsky}_{LW}`,
                1607 first. For a given cloud fraction, the clear line-of-sight probability
                1608 :math:`C(p,p^{\prime})` is computed from the current level pressure
                1609 :math:`p` to the model top pressure, :math:`p^{\prime} = p_{top}`, and
                1610 the model surface pressure, :math:`p^{\prime} = p_{surf}`, for the
                1611 upward and downward radiative fluxes. (see Section
                1612 [sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:
                1613 
0bad585a21 Navi*1614 .. math:: F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}
8679f9097b Jeff*1615 
                1616 Finally, the net longwave heating rate is calculated as the vertical
                1617 divergence of the net terrestrial radiative fluxes:
                1618 
0bad585a21 Navi*1619 .. math:: \pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET}
8679f9097b Jeff*1620 
                1621 or
                1622 
0bad585a21 Navi*1623 .. math:: {\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET}
8679f9097b Jeff*1624 
                1625 where :math:`g` is the accelation due to gravity, :math:`c_p` is the
                1626 heat capacity of air at constant pressure, and
                1627 
                1628 .. math:: F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
                1629 
                1630 
                1631 RADSW - Heating Rate due to Shortwave Radiation (deg/day) 
                1632 #########################################################
                1633 
                1634 The net Shortwave heating rate is calculated as the vertical divergence
                1635 of the net solar radiative fluxes. The clear-sky and cloudy-sky
                1636 shortwave fluxes are calculated separately. For the clear-sky case, the
                1637 shortwave fluxes and heating rates are computed with both CLMO (maximum
                1638 overlap cloud fraction) and CLRO (random overlap cloud fraction) set to
                1639 zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then
                1640 called a second time, for the cloudy-sky case, with the true
                1641 time-averaged cloud fractions CLMO and CLRO being used. In all cases, a
                1642 normalized incident shortwave flux is used as input at the top of the
                1643 atmosphere.
                1644 
                1645 The heating rate due to Shortwave Radiation under cloudy skies is
                1646 defined as:
                1647 
0bad585a21 Navi*1648 .. math:: \pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}
8679f9097b Jeff*1649 
                1650 or
                1651 
0bad585a21 Navi*1652 .. math:: {\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT}
8679f9097b Jeff*1653 
                1654 where :math:`g` is the accelation due to gravity, :math:`c_p` is the
                1655 heat capacity of air at constant pressure, RADSWT is the true incident
                1656 shortwave radiation at the top of the atmosphere (See Diagnostic #48),
                1657 and
                1658 
                1659 .. math:: F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
                1660 
                1661 
                1662 PREACC - Total (Large-scale + Convective) Accumulated Precipition (mm/day) 
                1663 ###########################################################################
                1664 
                1665 For a change in specific humidity due to moist processes,
                1666 :math:`\Delta q_{moist}`, the vertical integral or total precipitable
                1667 amount is given by:
                1668 
                1669 .. math::
                1670 
                1671    {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
                1672    \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp
                1673 
                1674 A precipitation rate is defined as the vertically integrated moisture
                1675 adjustment per Moist Processes time step, scaled to :math:`mm/day`.
                1676 
                1677 
                1678 PRECON - Convective Precipition (mm/day)
                1679 ########################################
                1680 
                1681 For a change in specific humidity due to sub-grid scale cumulus
                1682 convective processes, :math:`\Delta q_{cum}`, the vertical integral or
                1683 total precipitable amount is given by:
                1684 
                1685 .. math::
                1686 
                1687    {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
                1688    \frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp
                1689 
                1690 A precipitation rate is defined as the vertically integrated moisture
                1691 adjustment per Moist Processes time step, scaled to :math:`mm/day`.
                1692 
                1693 TUFLUX - Turbulent Flux of U-Momentum (Newton/m^2)
                1694 ##################################################
                1695 
                1696 The turbulent flux of u-momentum is calculated for
                1697 :math:`diagnostic \hspace{.2cm} purposes 
                1698 \hspace{.2cm} only` from the eddy coefficient for momentum:
                1699 
                1700 .. math::
                1701 
                1702    {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =  
                1703    {\rho } {(- K_m \pp{U}{z})}
                1704 
                1705 where :math:`\rho` is the air density, and :math:`K_m` is the eddy
                1706 coefficient.
                1707 
                1708 TVFLUX - Turbulent Flux of V-Momentum (Newton/m^2)
                1709 ###################################################
                1710 
                1711 The turbulent flux of v-momentum is calculated for
                1712 :math:`diagnostic \hspace{.2cm} purposes 
                1713 \hspace{.2cm} only` from the eddy coefficient for momentum:
                1714 
                1715 .. math::
                1716 
                1717    {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} = 
                1718     {\rho } {(- K_m \pp{V}{z})}
                1719 
                1720 where :math:`\rho` is the air density, and :math:`K_m` is the eddy
                1721 coefficient.
                1722 
                1723 
                1724 TTFLUX - Turbulent Flux of Sensible Heat (Watts/m^2) 
                1725 ####################################################
                1726 
                1727 The turbulent flux of sensible heat is calculated for
                1728 :math:`diagnostic \hspace{.2cm} purposes 
                1729 \hspace{.2cm} only` from the eddy coefficient for heat and moisture:
                1730 
                1731 .. math::
                1732 
                1733    {\bf TTFLUX} = c_p {\rho }  
                1734    P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
                1735     = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
                1736 
                1737 where :math:`\rho` is the air density, and :math:`K_h` is the eddy
                1738 coefficient.
                1739 
                1740 
                1741 TQFLUX - Turbulent Flux of Latent Heat (Watts/m^2)
                1742 ###################################################
                1743 
                1744 The turbulent flux of latent heat is calculated for
                1745 :math:`diagnostic \hspace{.2cm} purposes 
                1746 \hspace{.2cm} only` from the eddy coefficient for heat and moisture:
                1747 
                1748 .. math::
                1749 
                1750    {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} = 
                1751    {L {\rho }(- K_h \pp{q}{z})}
                1752 
                1753 where :math:`\rho` is the air density, and :math:`K_h` is the eddy
                1754 coefficient.
                1755 
                1756 
                1757 CN - Neutral Drag Coefficient (dimensionless)
                1758 #############################################
                1759 
                1760 The drag coefficient for momentum obtained by assuming a neutrally
                1761 stable surface layer:
                1762 
                1763 .. math:: {\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) }
                1764 
                1765 where :math:`k` is the Von Karman constant, :math:`h` is the height of
                1766 the surface layer, and :math:`z_0` is the surface roughness.
                1767 
                1768 WINDS - Surface Wind Speed (meter/sec)
                1769 ######################################
                1770 
                1771 The surface wind speed is calculated for the last internal turbulence
                1772 time step:
                1773 
                1774 .. math:: {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
                1775 
                1776 where the subscript :math:`Nrphys` refers to the lowest model level.
                1777 
                1778 The air/surface virtual temperature difference measures the stability of
                1779 the surface layer:
                1780 
                1781 .. math:: {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
                1782 
                1783 where
                1784 
                1785 .. math::
                1786 
                1787    \theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
                1788    and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
                1789 
                1790 :math:`\beta` is the surface potential evapotranspiration coefficient
                1791 (:math:`\beta=1` over oceans), :math:`q^*(T_g,P_s)` is the saturation
                1792 specific humidity at the ground temperature and surface pressure, level
                1793 :math:`Nrphys` refers to the lowest model level and level
                1794 :math:`Nrphys+1` refers to the surface.
                1795 
                1796 
                1797 TG - Ground Temperature (deg K)
                1798 ################################
                1799 
                1800 The ground temperature equation is solved as part of the turbulence
                1801 package using a backward implicit time differencing scheme:
                1802 
                1803 .. math::
                1804 
                1805    {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
0bad585a21 Navi*1806    C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{\rm ice} - H - LE
8679f9097b Jeff*1807 
                1808 where :math:`R_{sw}` is the net surface downward shortwave radiative
                1809 flux, :math:`R_{lw}` is the net surface upward longwave radiative flux,
0bad585a21 Navi*1810 :math:`Q_{\rm ice}` is the heat conduction through sea ice, :math:`H` is the
8679f9097b Jeff*1811 upward sensible heat flux, :math:`LE` is the upward latent heat flux,
                1812 and :math:`C_g` is the total heat capacity of the ground. :math:`C_g` is
                1813 obtained by solving a heat diffusion equation for the penetration of the
                1814 diurnal cycle into the ground (), and is given by:
                1815 
                1816 .. math::
                1817 
                1818    C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
0bad585a21 Navi*1819    \frac{86400.}{2\pi} }
8679f9097b Jeff*1820 
                1821 Here, the thermal conductivity, :math:`\lambda`, is equal to
                1822 :math:`2x10^{-3}` :math:`\frac{ly}{sec} 
                1823 \frac{cm}{K}`, the angular velocity of the earth, :math:`\omega`, is
                1824 written as :math:`86400` :math:`sec/day` divided by :math:`2 \pi`
                1825 :math:`radians/
                1826 day`, and the expression for :math:`C_s`, the heat capacity per unit
                1827 volume at the surface, is a function of the ground wetness, :math:`W`.
                1828 
                1829 
                1830 TS - Surface Temperature (deg K)
                1831 #################################
                1832 
                1833 The surface temperature estimate is made by assuming that the model’s
                1834 lowest layer is well-mixed, and therefore that :math:`\theta` is
                1835 constant in that layer. The surface temperature is therefore:
                1836 
                1837 .. math:: {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
                1838 
                1839 
                1840 DTG - Surface Temperature Adjustment (deg K)
                1841 ############################################
                1842 
                1843 The change in surface temperature from one turbulence time step to the
                1844 next, solved using the Ground Temperature Equation (see diagnostic
                1845 number 30) is calculated:
                1846 
                1847 .. math:: {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
                1848 
                1849 where superscript :math:`n` refers to the new, updated time level, and
                1850 the superscript :math:`n-1` refers to the value at the previous
                1851 turbulence time level.
                1852 
                1853 
                1854 QG - Ground Specific Humidity (g/kg)
                1855 #####################################
                1856 
                1857 The ground specific humidity is obtained by interpolating between the
                1858 specific humidity at the lowest model level and the specific humidity of
                1859 a saturated ground. The interpolation is performed using the potential
                1860 evapotranspiration function:
                1861 
                1862 .. math:: {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
                1863 
                1864 where :math:`\beta` is the surface potential evapotranspiration
                1865 coefficient (:math:`\beta=1` over oceans), and :math:`q^*(T_g,P_s)` is
                1866 the saturation specific humidity at the ground temperature and surface
                1867 pressure.
                1868 
                1869 
                1870 QS - Saturation Surface Specific Humidity (g/kg)
                1871 ################################################
                1872 
                1873 The surface saturation specific humidity is the saturation specific
                1874 humidity at the ground temprature and surface pressure:
                1875 
                1876 .. math:: {\bf QS} = q^*(T_g,P_s)
                1877 
                1878 TGRLW - Instantaneous ground temperature used as input to the Longwave radiation subroutine (deg)
                1879 #################################################################################################
                1880 
                1881 .. math:: {\bf TGRLW}  = T_g(\lambda , \phi ,n)
                1882 
                1883 where :math:`T_g` is the model ground temperature at the current time
                1884 step :math:`n`.
                1885 
                1886 ST4 - Upward Longwave flux at the surface (Watts/m^2)
                1887 #####################################################
                1888 
                1889 .. math:: {\bf ST4} = \sigma T^4
                1890 
                1891 where :math:`\sigma` is the Stefan-Boltzmann constant and T is the
                1892 temperature.
                1893 
                1894 
                1895 OLR - Net upward Longwave flux at :math:`p=p_{top}` (Watts/m^2)
                1896 ################################################################
                1897 
                1898 .. math:: {\bf OLR}  =  F_{LW,top}^{NET}
                1899 
                1900 where top indicates the top of the first model layer. In the GCM,
                1901 :math:`p_{top}` = 0.0 mb.
                1902 
                1903 
                1904 OLRCLR - Net upward clearsky Longwave flux at :math:`p=p_{top}` (Watts/m^2)
                1905 ###########################################################################
                1906 
                1907 .. math:: {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}
                1908 
                1909 where top indicates the top of the first model layer. In the GCM,
                1910 :math:`p_{top}` = 0.0 mb.
                1911 
                1912 
                1913 LWGCLR - Net upward clearsky Longwave flux at the surface (Watts/m^2)
                1914 ######################################################################
                1915 
                1916 .. math::
                1917 
                1918    \begin{aligned}
                1919    {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
                1920                 & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow\end{aligned}
                1921 
                1922 where Nrphys+1 indicates the lowest model edge-level, or
                1923 :math:`p = p_{surf}`. :math:`F(clearsky)_{LW}^\uparrow` is the upward
                1924 clearsky Longwave flux and the :math:`F(clearsky)_{LW}^\downarrow` is
                1925 the downward clearsky Longwave flux.
                1926 
                1927 
                1928 LWCLR - Heating Rate due to Clearsky Longwave Radiation (deg/day)
                1929 #################################################################
                1930 
                1931 The net longwave heating rate is calculated as the vertical divergence
                1932 of the net terrestrial radiative fluxes. Both the clear-sky and
                1933 cloudy-sky longwave fluxes are computed within the longwave routine. The
                1934 subroutine calculates the clear-sky flux, :math:`F^{clearsky}_{LW}`,
                1935 first. For a given cloud fraction, the clear line-of-sight probability
                1936 :math:`C(p,p^{\prime})` is computed from the current level pressure
                1937 :math:`p` to the model top pressure, :math:`p^{\prime} = p_{top}`, and
                1938 the model surface pressure, :math:`p^{\prime} = p_{surf}`, for the
                1939 upward and downward radiative fluxes. (see Section
                1940 [sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:
                1941 
0bad585a21 Navi*1942 .. math:: F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}
8679f9097b Jeff*1943 
                1944 Thus, **LWCLR** is defined as the net longwave heating rate due to the
                1945 vertical divergence of the clear-sky longwave radiative flux:
                1946 
0bad585a21 Navi*1947 .. math:: \pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET}
8679f9097b Jeff*1948 
                1949 or
                1950 
0bad585a21 Navi*1951 .. math:: {\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET}
8679f9097b Jeff*1952 
                1953 where :math:`g` is the accelation due to gravity, :math:`c_p` is the
                1954 heat capacity of air at constant pressure, and
                1955 
                1956 .. math:: F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
                1957 
                1958 
                1959 TLW - Instantaneous temperature used as input to the Longwave radiation subroutine (deg)
                1960 ########################################################################################
                1961 
                1962 .. math:: {\bf TLW}  = T(\lambda , \phi ,level, n)
                1963 
                1964 where :math:`T` is the model temperature at the current time step
                1965 :math:`n`.
                1966 
                1967 
                1968 SHLW - Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)
                1969 #################################################################################################
                1970 
                1971 .. math:: {\bf SHLW}  = q(\lambda , \phi , level , n)
                1972 
                1973 where :math:`q` is the model specific humidity at the current time step
                1974 :math:`n`.
                1975 
                1976 
                1977 OZLW - Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)
                1978 #####################################################################################
                1979 
                1980 .. math:: {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)
                1981 
                1982 where :math:`\rm OZ` is the interpolated ozone data set from the
                1983 climatological monthly mean zonally averaged ozone data set.
                1984 
                1985 
                1986 CLMOLW - Maximum Overlap cloud fraction used in LW Radiation (0-1)
                1987 ##################################################################
                1988 
                1989 **CLMOLW** is the time-averaged maximum overlap cloud fraction that has been
                1990 filled by the Relaxed Arakawa/Schubert Convection scheme and will be
                1991 used in the Longwave Radiation algorithm. These are convective clouds
                1992 whose radiative characteristics are assumed to be correlated in the
                1993 vertical. For a complete description of cloud/radiative interactions,
                1994 see Section [sec:fizhi:radcloud].
                1995 
                1996 .. math:: {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )
                1997 
                1998 
                1999 CLDTOT - Total cloud fraction used in LW and SW Radiation (0-1)
                2000 ###############################################################
                2001 
                2002 **CLDTOT** is the time-averaged total cloud fraction that has been
                2003 filled by the Relaxed Arakawa/Schubert and Large-scale Convection
                2004 schemes and will be used in the Longwave and Shortwave Radiation
                2005 packages. For a complete description of cloud/radiative interactions,
                2006 see Section [sec:fizhi:radcloud].
                2007 
                2008 .. math:: {\bf CLDTOT} = F_{RAS} + F_{LS}
                2009 
                2010 where :math:`F_{RAS}` is the time-averaged cloud fraction due to
                2011 sub-grid scale convection, and :math:`F_{LS}` is the time-averaged cloud
                2012 fraction due to precipitating and non-precipitating large-scale moist
                2013 processes.
                2014 
                2015 
                2016 CLMOSW - Maximum Overlap cloud fraction used in SW Radiation (0-1)
                2017 ##################################################################
                2018 
                2019 **CLMOSW** is the time-averaged maximum overlap cloud fraction that has been
                2020 filled by the Relaxed Arakawa/Schubert Convection scheme and will be
                2021 used in the Shortwave Radiation algorithm. These are convective clouds
                2022 whose radiative characteristics are assumed to be correlated in the
                2023 vertical. For a complete description of cloud/radiative interactions,
                2024 see Section [sec:fizhi:radcloud].
                2025 
                2026 .. math:: {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )
                2027 
                2028 
                2029 CLROSW - Random Overlap cloud fraction used in SW Radiation (0-1)
                2030 #################################################################
                2031 
                2032 **CLROSW** is the time-averaged random overlap cloud fraction that has been
                2033 filled by the Relaxed Arakawa/Schubert and Large-scale Convection
                2034 schemes and will be used in the Shortwave Radiation algorithm. These are
                2035 convective and large-scale clouds whose radiative characteristics are
                2036 not assumed to be correlated in the vertical. For a complete description
                2037 of cloud/radiative interactions, see Section [sec:fizhi:radcloud].
                2038 
                2039 .. math:: {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )
                2040 
                2041 
                2042 RADSWT - Incident Shortwave radiation at the top of the atmosphere (Watts/m^2)
                2043 ##############################################################################
                2044 
                2045 .. math:: {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
                2046 
                2047 where :math:`S_0`, is the extra-terrestial solar contant, :math:`R_a` is
                2048 the earth-sun distance in Astronomical Units, and :math:`cos \phi_z` is
                2049 the cosine of the zenith angle. It should be noted that **RADSWT**, as
                2050 well as **OSR** and **OSRCLR**, are calculated at the top of the
                2051 atmosphere (p=0 mb). However, the **OLR** and **OLRCLR** diagnostics are
                2052 currently calculated at :math:`p= p_{top}` (0.0 mb for the GCM).
                2053 
                2054 
                2055 EVAP - Surface Evaporation (mm/day)
                2056 ###################################
                2057 
                2058 The surface evaporation is a function of the gradient of moisture, the
                2059 potential evapotranspiration fraction and the eddy exchange coefficient:
                2060 
0bad585a21 Navi*2061 .. math:: {\bf EVAP} =  \rho \beta K_{h} (q_{\rm surface} - q_{Nrphys})
8679f9097b Jeff*2062 
                2063 where :math:`\rho` = the atmospheric density at the surface,
                2064 :math:`\beta` is the fraction of the potential evapotranspiration
                2065 actually evaporated (:math:`\beta=1` over oceans), :math:`K_{h}` is the
                2066 turbulent eddy exchange coefficient for heat and moisture at the surface
                2067 in :math:`m/sec` and :math:`q{surface}` and :math:`q_{Nrphys}` are the
                2068 specific humidity at the surface (see diagnostic number 34) and at the
                2069 bottom model level, respectively.
                2070 
                2071 
                2072 DUDT - Total Zonal U-Wind Tendency  (m/sec/day)
                2073 ###############################################
                2074 
                2075 **DUDT** is the total time-tendency of the Zonal U-Wind due to Hydrodynamic,
                2076 Diabatic, and Analysis forcing.
                2077 
                2078 .. math:: {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
                2079 
                2080 
                2081 DVDT - Total Zonal V-Wind Tendency  (m/sec/day)
                2082 ###############################################
                2083 
                2084 **DVDT** is the total time-tendency of the Meridional V-Wind due to
                2085 Hydrodynamic, Diabatic, and Analysis forcing.
                2086 
                2087 .. math:: {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
                2088 
                2089 
                2090 DTDT - Total Temperature Tendency  (deg/day)
                2091 ############################################
                2092 
                2093 **DTDT** is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
                2094 and Analysis forcing.
                2095 
                2096 .. math::
                2097 
                2098    \begin{aligned}
0bad585a21 Navi*2099    {\bf DTDT} & = \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
                2100               & + \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} \end{aligned}
8679f9097b Jeff*2101 
                2102 
                2103 DQDT - Total Specific Humidity Tendency  (g/kg/day)
                2104 ###################################################
                2105 
                2106 **DQDT** is the total time-tendency of Specific Humidity due to Hydrodynamic,
                2107 Diabatic, and Analysis forcing.
                2108 
                2109 .. math::
                2110 
                2111    {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes} 
                2112    + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
                2113 
                2114 
                2115 USTAR -  Surface-Stress Velocity (m/sec)
                2116 ########################################
                2117 
                2118 The surface stress velocity, or the friction velocity, is the wind speed
                2119 at the surface layer top impeded by the surface drag:
                2120 
                2121 .. math::
                2122 
                2123    {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm} 
                2124    C_u = \frac{k}{\psi_m}
                2125 
                2126 :math:`C_u` is the non-dimensional surface drag coefficient (see
                2127 diagnostic number 10), and :math:`W_s` is the surface wind speed (see
                2128 diagnostic number 28).
                2129 
                2130 
                2131 Z0 - Surface Roughness Length (m)
                2132 #################################
                2133 
                2134 Over the land surface, the surface roughness length is interpolated to
                2135 the local time from the monthly mean data of . Over the ocean, the
                2136 roughness length is a function of the surface-stress velocity,
                2137 :math:`u_*`.
                2138 
                2139 .. math:: {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*}
                2140 
                2141 where the constants are chosen to interpolate between the reciprocal
                2142 relation of for weak winds, and the piecewise linear relation of for
                2143 moderate to large winds.
                2144 
                2145 
                2146 FRQTRB - Frequency of Turbulence (0-1)
                2147 ######################################
                2148 
                2149 The fraction of time when turbulence is present is defined as the
                2150 fraction of time when the turbulent kinetic energy exceeds some minimum
                2151 value, defined here to be :math:`0.005 \hspace{.1cm}m^2/sec^2`. When
                2152 this criterion is met, a counter is incremented. The fraction over the
                2153 averaging interval is reported.
                2154 
                2155 
                2156 PBL - Planetary Boundary Layer Depth (mb)
                2157 #########################################
                2158 
                2159 The depth of the PBL is defined by the turbulence parameterization to be
                2160 the depth at which the turbulent kinetic energy reduces to ten percent
                2161 of its surface value.
                2162 
0bad585a21 Navi*2163 .. math:: {\bf PBL} = P_{PBL} - P_{\rm surface}
8679f9097b Jeff*2164 
                2165 where :math:`P_{PBL}` is the pressure in :math:`mb` at which the
                2166 turbulent kinetic energy reaches one tenth of its surface value, and
                2167 :math:`P_s` is the surface pressure.
                2168 
                2169 
                2170 SWCLR - Clear sky Heating Rate due to Shortwave Radiation (deg/day)
                2171 ###################################################################
                2172 
                2173 The net Shortwave heating rate is calculated as the vertical divergence
                2174 of the net solar radiative fluxes. The clear-sky and cloudy-sky
                2175 shortwave fluxes are calculated separately. For the clear-sky case, the
                2176 shortwave fluxes and heating rates are computed with both CLMO (maximum
                2177 overlap cloud fraction) and CLRO (random overlap cloud fraction) set to
                2178 zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then
                2179 called a second time, for the cloudy-sky case, with the true
                2180 time-averaged cloud fractions CLMO and CLRO being used. In all cases, a
                2181 normalized incident shortwave flux is used as input at the top of the
                2182 atmosphere.
                2183 
                2184 The heating rate due to Shortwave Radiation under clear skies is defined
                2185 as:
                2186 
0bad585a21 Navi*2187 .. math:: \pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}
8679f9097b Jeff*2188 
                2189 or
                2190 
0bad585a21 Navi*2191 .. math:: {\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT}
8679f9097b Jeff*2192 
                2193 where :math:`g` is the accelation due to gravity, :math:`c_p` is the
                2194 heat capacity of air at constant pressure, RADSWT is the true incident
                2195 shortwave radiation at the top of the atmosphere (See Diagnostic #48),
                2196 and
                2197 
                2198 .. math:: F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
                2199 
                2200 
                2201 OSR - Net upward Shortwave flux at the top of the model (Watts/m^2)
                2202 ###################################################################
                2203 
                2204 .. math:: {\bf OSR}  =  F_{SW,top}^{NET}
                2205 
                2206 where top indicates the top of the first model layer used in the
                2207 shortwave radiation routine. In the GCM, :math:`p_{SW_{top}}` = 0 mb.
                2208 
                2209 
                2210 OSRCLR - Net upward clearsky Shortwave flux at the top of the model (Watts/m^2)
                2211 ###############################################################################
                2212 
                2213 .. math:: {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}
                2214 
                2215 where top indicates the top of the first model layer used in the
                2216 shortwave radiation routine. In the GCM, :math:`p_{SW_{top}}` = 0 mb.
                2217 
                2218 
                2219 CLDMAS - Convective Cloud Mass Flux (kg/m^2) 
                2220 ############################################
                2221 
                2222 The amount of cloud mass moved per RAS timestep from all convective
                2223 clouds is written:
                2224 
                2225 .. math:: {\bf CLDMAS} = \eta m_B
                2226 
                2227 where :math:`\eta` is the entrainment, normalized by the cloud base mass
                2228 flux, and :math:`m_B` is the cloud base mass flux. :math:`m_B` and
                2229 :math:`\eta` are defined explicitly in :numref:`para_phys_pkg_fizhi_mc`, the
                2230 description of the convective parameterization.
                2231 
                2232 
                2233 UAVE - Time-Averaged Zonal U-Wind (m/sec)
                2234 #########################################
                2235 
                2236 The diagnostic **UAVE** is simply the time-averaged Zonal U-Wind over
                2237 the **NUAVE** output frequency. This is contrasted to the instantaneous
                2238 Zonal U-Wind which is archived on the Prognostic Output data stream.
                2239 
                2240 .. math:: {\bf UAVE} = u(\lambda, \phi, level , t)
                2241 
                2242 Note, **UAVE** is computed and stored on the staggered C-grid.
                2243 
                2244 
                2245 VAVE - Time-Averaged Meridional V-Wind (m/sec)
                2246 ##############################################
                2247 
                2248 The diagnostic **VAVE** is simply the time-averaged Meridional V-Wind
                2249 over the **NVAVE** output frequency. This is contrasted to the
                2250 instantaneous Meridional V-Wind which is archived on the Prognostic
                2251 Output data stream.
                2252 
                2253 .. math:: {\bf VAVE} = v(\lambda, \phi, level , t)
                2254 
                2255 Note, **VAVE** is computed and stored on the staggered C-grid.
                2256 
                2257 
                2258 TAVE - Time-Averaged Temperature (Kelvin)
                2259 #########################################
                2260 
                2261 The diagnostic **TAVE** is simply the time-averaged Temperature over
                2262 the **NTAVE** output frequency. This is contrasted to the instantaneous
                2263 Temperature which is archived on the Prognostic Output data stream.
                2264 
                2265 .. math:: {\bf TAVE} = T(\lambda, \phi, level , t)
                2266 
                2267 
                2268 QAVE - Time-Averaged Specific Humidity (g/kg)
                2269 #############################################
                2270 
                2271 The diagnostic **QAVE** is simply the time-averaged Specific Humidity
                2272 over the **NQAVE** output frequency. This is contrasted to the
                2273 instantaneous Specific Humidity which is archived on the Prognostic
                2274 Output data stream.
                2275 
                2276 .. math:: {\bf QAVE} = q(\lambda, \phi, level , t)
                2277 
                2278 
                2279 PAVE - Time-Averaged Surface Pressure - PTOP (mb)
                2280 #################################################
                2281 
                2282 The diagnostic **PAVE** is simply the time-averaged Surface Pressure -
                2283 PTOP over the **NPAVE** output frequency. This is contrasted to the
                2284 instantaneous Surface Pressure - PTOP which is archived on the
                2285 Prognostic Output data stream.
                2286 
                2287 .. math::
                2288 
                2289    \begin{aligned}
                2290    {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
                2291               & =  & p_s(\lambda, \phi, level , t) - p_T\end{aligned}
                2292 
                2293 QQAVE - Time-Averaged Turbulent Kinetic Energy (m/sec)^2
                2294 ########################################################
                2295 
                2296 The diagnostic **QQAVE** is simply the time-averaged prognostic
                2297 Turbulent Kinetic Energy produced by the GCM Turbulence parameterization
                2298 over the **NQQAVE** output frequency. This is contrasted to the
                2299 instantaneous Turbulent Kinetic Energy which is archived on the
                2300 Prognostic Output data stream.
                2301 
                2302 .. math:: {\bf QQAVE} = qq(\lambda, \phi, level , t)
                2303 
                2304 Note, **QQAVE** is computed and stored at the “mass-point” locations
                2305 on the staggered C-grid.
                2306 
                2307 
                2308 SWGCLR - Net downward clearsky Shortwave flux at the surface (Watts/m^2)
                2309 ########################################################################
                2310 
                2311 .. math::
                2312 
                2313    \begin{aligned}
                2314    {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
                2315                 & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow\end{aligned}
                2316 
                2317  
                2318 where Nrphys+1 indicates the lowest model edge-level, or
                2319 :math:`p = p_{surf}`. :math:`F(clearsky){SW}^\downarrow` is the downward
                2320 clearsky Shortwave flux and :math:`F(clearsky)_{SW}^\uparrow` is the
                2321 upward clearsky Shortwave flux.
                2322 
                2323 
                2324 DIABU - Total Diabatic Zonal U-Wind Tendency  (m/sec/day)
                2325 #########################################################
                2326 
                2327 **DIABU** is the total time-tendency of the Zonal U-Wind due to Diabatic
                2328 processes and the Analysis forcing.
                2329 
                2330 .. math:: {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
                2331 
                2332 
                2333 
                2334 DIABV - Total Diabatic Meridional V-Wind Tendency  (m/sec/day)
                2335 ##############################################################
                2336 
                2337 **DIABV** is the total time-tendency of the Meridional V-Wind due to Diabatic
                2338 processes and the Analysis forcing.
                2339 
                2340 .. math:: {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
                2341 
                2342 
                2343 DIABT Total Diabatic Temperature Tendency (deg/day)
                2344 ###################################################
                2345 
                2346 **DIABT** is the total time-tendency of Temperature due to Diabatic processes and
                2347 the Analysis forcing.
                2348 
                2349 .. math::
                2350 
                2351    \begin{aligned}
0bad585a21 Navi*2352    {\bf DIABT} & = \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
                2353               & + \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} \end{aligned}
8679f9097b Jeff*2354 
                2355 If we define the time-tendency of Temperature due to Diabatic
                2356 processes as
                2357 
                2358 .. math::
                2359 
                2360    \begin{aligned}
0bad585a21 Navi*2361    \pp{T}{t}_{Diabatic} & = \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
                2362                         & + \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}\end{aligned}
8679f9097b Jeff*2363 
                2364 then, since there are no surface pressure changes due to Diabatic
                2365 processes, we may write
                2366 
                2367 .. math:: \pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic}
                2368 
                2369 where :math:`\theta = T/p^\kappa`. Thus, **DIABT** may be written as
                2370 
                2371 .. math:: {\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
                2372 
                2373 
                2374 DIABQ - Total Diabatic Specific Humidity Tendency (g/kg/day)
                2375 ############################################################
                2376 
                2377 **DIABQ** is the total time-tendency of Specific Humidity due to Diabatic
                2378 processes and the Analysis forcing.
                2379 
                2380 .. math:: {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
                2381 
                2382 If we define the time-tendency of Specific Humidity due to Diabatic
                2383 processes as
                2384 
                2385 .. math:: \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
                2386 
                2387 then, since there are no surface pressure changes due to Diabatic
                2388 processes, we may write
                2389 
                2390 .. math:: \pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic}
                2391 
                2392  Thus, **DIABQ** may be written as
                2393 
                2394 .. math:: {\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
                2395 
                2396 
                2397 VINTUQ - Vertically Integrated Moisture Flux (m/sec  g/kg)
                2398 ##########################################################
                2399 
                2400 The vertically integrated moisture flux due to the zonal u-wind is
                2401 obtained by integrating :math:`u q` over the depth of the atmosphere at
                2402 each model timestep, and dividing by the total mass of the column.
                2403 
                2404 .. math:: {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }
                2405 
                2406 Using
                2407 :math:`\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p`, we
                2408 have
                2409 
                2410 .. math:: {\bf VINTUQ} = { \int_0^1 u q dp  }
                2411 
                2412 
                2413 VINTVQ - Vertically Integrated Moisture Flux (m/sec g/kg)
                2414 #########################################################
                2415 
                2416 The vertically integrated moisture flux due to the meridional v-wind
                2417 is obtained by integrating :math:`v q` over the depth of the atmosphere
                2418 at each model timestep, and dividing by the total mass of the column.
                2419 
                2420 .. math:: {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }
                2421 
                2422 Using
                2423 :math:`\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p`, we
                2424 have
                2425 
                2426 .. math:: {\bf VINTVQ} = { \int_0^1 v q dp  }
                2427 
                2428 
                2429 VINTUT - Vertically Integrated Heat Flux (m/sec deg)
                2430 ####################################################
                2431 
                2432 The vertically integrated heat flux due to the zonal u-wind is
                2433 obtained by integrating :math:`u T` over the depth of the atmosphere at
                2434 each model timestep, and dividing by the total mass of the column.
                2435 
                2436 .. math:: {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }
                2437 
                2438 Or,
                2439 
                2440 .. math:: {\bf VINTUT} = { \int_0^1 u T dp  }
                2441 
                2442 
                2443 VINTVT - Vertically Integrated Heat Flux (m/sec deg)
                2444 ####################################################
                2445 
                2446 The vertically integrated heat flux due to the meridional v-wind is
                2447 obtained by integrating :math:`v T` over the depth of the atmosphere at
                2448 each model timestep, and dividing by the total mass of the column.
                2449 
                2450 .. math:: {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }
                2451 
                2452 Using :math:`\rho \delta z = -\frac{\delta p}{g}`, we have
                2453 
                2454 .. math:: {\bf VINTVT} = { \int_0^1 v T dp  }
                2455 
                2456 
                2457 CLDFRC - Total 2-Dimensional Cloud Fracton (0-1)
                2458 ################################################
                2459 
                2460 If we define the time-averaged random and maximum overlapped cloudiness
                2461 as CLRO and CLMO respectively, then the probability of clear sky
                2462 associated with random overlapped clouds at any level is (1-CLRO) while
                2463 the probability of clear sky associated with maximum overlapped clouds
                2464 at any level is (1-CLMO). The total clear sky probability is given by
                2465 (1-CLRO)\*(1-CLMO), thus the total cloud fraction at each level may be
                2466 obtained by 1-(1-CLRO)\*(1-CLMO).
                2467 
                2468 At any given level, we may define the clear line-of-site probability by
                2469 appropriately accounting for the maximum and random overlap cloudiness.
                2470 The clear line-of-site probability is defined to be equal to the product
                2471 of the clear line-of-site probabilities associated with random and
                2472 maximum overlap cloudiness. The clear line-of-site probability
                2473 :math:`C(p,p^{\prime})` associated with maximum overlap clouds, from the
                2474 current pressure :math:`p` to the model top pressure,
                2475 :math:`p^{\prime} = p_{top}`, or the model surface pressure,
                2476 :math:`p^{\prime} = p_{surf}`, is simply 1.0 minus the largest maximum
                2477 overlap cloud value along the line-of-site, ie.
                2478 
                2479 .. math:: 1-MAX_p^{p^{\prime}} \left( CLMO_p \right)
                2480 
                2481 Thus, even in the time-averaged sense it is assumed that the maximum
                2482 overlap clouds are correlated in the vertical. The clear line-of-site
                2483 probability associated with random overlap clouds is defined to be the
                2484 product of the clear sky probabilities at each level along the
                2485 line-of-site, ie.
                2486 
                2487 .. math:: \prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)
                2488 
                2489 The total cloud fraction at a given level associated with a line-
                2490 of-site calculation is given by
                2491 
                2492 .. math::
                2493 
                2494    1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
                2495        \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)
                2496 
                2497 The 2-dimensional net cloud fraction as seen from the top of the
                2498 atmosphere is given by
                2499 
                2500 .. math::
                2501 
                2502    {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
                2503        \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
                2504 
                2505 For a complete description of cloud/radiative interactions, see
                2506 Section [sec:fizhi:radcloud].
                2507 
                2508 
                2509 QINT - Total Precipitable Water (gm/cm^2)
                2510 #########################################
                2511 
                2512 The Total Precipitable Water is defined as the vertical integral of the
                2513 specific humidity, given by:
                2514 
                2515 .. math::
                2516 
                2517    \begin{aligned}
0bad585a21 Navi*2518    {\bf QINT} & = \int_{surf}^{top} \rho q dz \\
                2519               & = \frac{\pi}{g} \int_0^1 q dp
8679f9097b Jeff*2520    \end{aligned}
                2521 
                2522 where we have used the hydrostatic relation
                2523 :math:`\rho \delta z = -\frac{\delta p}{g}`.
                2524 
                2525 
                2526 U2M  Zonal U-Wind at 2 Meter Depth (m/sec)
                2527 ##########################################
                2528 
                2529 The u-wind at the 2-meter depth is determined from the similarity
                2530 theory:
                2531 
                2532 .. math::
                2533 
                2534    {\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} =
                2535    \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl}
                2536 
                2537 where :math:`\psi_m(2m)` is the non-dimensional wind shear at two
                2538 meters, and the subscript :math:`sl` refers to the height of the top of
                2539 the surface layer. If the roughness height is above two meters,
                2540 :math:`{\bf U2M}` is undefined.
                2541 
                2542 
                2543 V2M - Meridional V-Wind at 2 Meter Depth (m/sec)
                2544 ################################################
                2545 
                2546 The v-wind at the 2-meter depth is a determined from the similarity
                2547 theory:
                2548 
                2549 .. math::
                2550 
                2551    {\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} =
                2552    \frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl}
                2553 
                2554 where :math:`\psi_m(2m)` is the non-dimensional wind shear at two
                2555 meters, and the subscript :math:`sl` refers to the height of the top of
                2556 the surface layer. If the roughness height is above two meters,
                2557 :math:`{\bf V2M}` is undefined.
                2558 
                2559 
                2560 T2M - Temperature at 2 Meter Depth (deg K)
                2561 ##########################################
                2562 
                2563 The temperature at the 2-meter depth is a determined from the similarity
                2564 theory:
                2565 
                2566 .. math::
                2567 
                2568    {\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = 
                2569    P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
                2570    (\theta_{sl} - \theta_{surf}) )
                2571 
                2572 where:
                2573 
                2574 .. math:: \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
                2575 
                2576 where :math:`\psi_h(2m)` is the non-dimensional temperature gradient
                2577 at two meters, :math:`\psi_g` is the non-dimensional temperature
                2578 gradient in the viscous sublayer, and the subscript :math:`sl` refers to
                2579 the height of the top of the surface layer. If the roughness height is
                2580 above two meters, :math:`{\bf T2M}` is undefined.
                2581 
                2582 
                2583 Q2M - Specific Humidity at 2 Meter Depth (g/kg)
                2584 ###############################################
                2585 
                2586 The specific humidity at the 2-meter depth is determined from the
                2587 similarity theory:
                2588 
                2589 .. math::
                2590 
                2591    {\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = 
                2592    P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
                2593    (q_{sl} - q_{surf}))
                2594 
                2595 where:
                2596 
                2597 .. math:: q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
                2598 
                2599 where :math:`\psi_h(2m)` is the non-dimensional temperature gradient
                2600 at two meters, :math:`\psi_g` is the non-dimensional temperature
                2601 gradient in the viscous sublayer, and the subscript :math:`sl` refers to
                2602 the height of the top of the surface layer. If the roughness height is
                2603 above two meters, :math:`{\bf Q2M}` is undefined.
                2604 
                2605 
                2606 U10M - Zonal U-Wind at 10 Meter Depth (m/sec)
                2607 #############################################
                2608 
                2609 The u-wind at the 10-meter depth is an interpolation between the surface
                2610 wind and the model lowest level wind using the ratio of the
                2611 non-dimensional wind shear at the two levels:
                2612 
                2613 .. math::
                2614 
                2615    {\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} =
                2616    \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl}
                2617 
                2618 where :math:`\psi_m(10m)` is the non-dimensional wind shear at ten
                2619 meters, and the subscript :math:`sl` refers to the height of the top of
                2620 the surface layer.
                2621 
                2622 
                2623 V10M - Meridional V-Wind at 10 Meter Depth (m/sec)
                2624 ##################################################
                2625 
                2626 The v-wind at the 10-meter depth is an interpolation between the surface
                2627 wind and the model lowest level wind using the ratio of the
                2628 non-dimensional wind shear at the two levels:
                2629 
                2630 .. math::
                2631 
                2632    {\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} =
                2633    \frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl}
                2634 
                2635 where :math:`\psi_m(10m)` is the non-dimensional wind shear at ten
                2636 meters, and the subscript :math:`sl` refers to the height of the top of
                2637 the surface layer.
                2638 
                2639 
                2640 T10M - Temperature at 10 Meter Depth (deg K)
                2641 ############################################
                2642 
                2643 The temperature at the 10-meter depth is an interpolation between the
                2644 surface potential temperature and the model lowest level potential
                2645 temperature using the ratio of the non-dimensional temperature gradient
                2646 at the two levels:
                2647 
                2648 .. math::
                2649 
                2650    {\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = 
                2651    P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
                2652    (\theta_{sl} - \theta_{surf}))
                2653 
                2654 where:
                2655 
                2656 .. math:: \theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }
                2657 
                2658 where :math:`\psi_h(10m)` is the non-dimensional temperature gradient
                2659 at two meters, :math:`\psi_g` is the non-dimensional temperature
                2660 gradient in the viscous sublayer, and the subscript :math:`sl` refers to
                2661 the height of the top of the surface layer.
                2662 
                2663 
                2664 Q10M - Specific Humidity at 10 Meter Depth (g/kg)
                2665 #################################################
                2666 
                2667 The specific humidity at the 10-meter depth is an interpolation between
                2668 the surface specific humidity and the model lowest level specific
                2669 humidity using the ratio of the non-dimensional temperature gradient at
                2670 the two levels:
                2671 
                2672 .. math::
                2673 
                2674    {\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = 
                2675    P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
                2676    (q_{sl} - q_{surf}))
                2677 
                2678 where:
                2679 
                2680 .. math:: q_* =  - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }
                2681 
                2682 where :math:`\psi_h(10m)` is the non-dimensional temperature gradient
                2683 at two meters, :math:`\psi_g` is the non-dimensional temperature
                2684 gradient in the viscous sublayer, and the subscript :math:`sl` refers to
                2685 the height of the top of the surface layer.
                2686 
                2687 
                2688 DTRAIN - Cloud Detrainment Mass Flux (kg/m^2)
                2689 #############################################
                2690 
                2691 The amount of cloud mass moved per RAS timestep at the cloud
                2692 detrainment level is written:
                2693 
                2694 .. math:: {\bf DTRAIN} = \eta_{r_D}m_B
                2695 
                2696 where :math:`r_D` is the detrainment level, :math:`m_B` is the cloud
                2697 base mass flux, and :math:`\eta` is the entrainment, defined in :numref:`para_phys_pkg_fizhi_mc`.
                2698 
                2699 
                2700 QFILL - Filling of negative Specific Humidity (g/kg/day)
                2701 ########################################################
                2702 
                2703 Due to computational errors associated with the numerical scheme used
                2704 for the advection of moisture, negative values of specific humidity may
                2705 be generated. The specific humidity is checked for negative values after
                2706 every dynamics timestep. If negative values have been produced, a
                2707 filling algorithm is invoked which redistributes moisture from below.
                2708 Diagnostic **QFILL** is equal to the net filling needed to eliminate
                2709 negative specific humidity, scaled to a per-day rate:
                2710 
                2711 .. math:: {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
                2712 
                2713 where
                2714 
                2715 .. math:: q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
                2716 
                2717 Key subroutines, parameters and files
                2718 +++++++++++++++++++++++++++++++++++++
                2719 
                2720 
                2721 Dos and don'ts
                2722 ++++++++++++++
                2723 
                2724 
                2725 Fizhi Reference
                2726 +++++++++++++++
                2727 
                2728 
                2729 Experiments and tutorials that use fizhi
                2730 ++++++++++++++++++++++++++++++++++++++++
                2731 
                2732 -  Global atmosphere experiment with realistic SST and topography in
                2733    fizhi-cs-32x32x10 verification directory.
                2734 
                2735 -  Global atmosphere aqua planet experiment in fizhi-cs-aqualev20
                2736    verification directory.
                2737 
                2738