Warning, /doc/autodiff/autodiff.rst is written in an unsupported language. File is not indexed.
view on githubraw file Latest commit d8c5b895 on 2024-02-08 22:52:21 UTC
1c65381846 Jeff*0001 .. _chap_autodiff:
0002
0003 Automatic Differentiation
0004 *************************
0005
5f55d7c73d Jeff*0006 Author: Patrick Heimbach
0007
0008 *Automatic differentiation* (AD), also referred to as algorithmic (or,
0009 more loosely, computational) differentiation, involves automatically
0010 deriving code to calculate partial derivatives from an existing fully
0011 non-linear prognostic code (see Griewank and Walther, 2008 :cite:`griewank:08`).
0012 A software
0013 tool is used that parses and transforms source files according to a set
0014 of linguistic and mathematical rules. AD tools are like source-to-source
0015 translators in that they parse a program code as input and produce a new
0016 program code as output (we restrict our discussion to source-to-source
0017 tools, ignoring operator-overloading tools). However, unlike a pure
0018 source-to-source translation, the output program represents a new
0019 algorithm, such as the evaluation of the Jacobian, the Hessian, or
0020 higher derivative operators. In principle, a variety of derived
0021 algorithms can be generated automatically in this way.
0022
0023 MITgcm has been adapted for use with the Tangent linear and Adjoint
0024 Model Compiler (TAMC) and its successor TAF (Transformation of
0025 Algorithms in Fortran), developed by Ralf Giering
0026 (Giering and Kaminski, 1998 :cite:`giering:98`, Giering, 2000
0027 :cite:`giering:00`). The
0028 first application of the adjoint of MITgcm for sensitivity studies was
0029 published by Marotzke et al. (1999) :cite:`maro-eta:99`.
0030 Stammer et al. (1997, 2002) :cite:`stammer:97` :cite:`stammer:02` use MITgcm and its adjoint
0031 for ocean state estimation studies. In the following we shall refer to
0032 TAMC and TAF synonymously, except were explicitly stated otherwise.
0033
0034 As of mid-2007 we are also able to generate fairly efficient adjoint
0035 code of the MITgcm using a new, open-source AD tool, called OpenAD (see
0036 Naumann, 2006 :cite:`naumann:06` and Utke et al., 2008 :cite:`utke:08`).
0037 This enables us for the
0038 first time to compare adjoint models generated from different AD tools,
0039 providing an additional accuracy check, complementary to
0040 finite-difference gradient checks. OpenAD and its application to MITgcm
0041 is described in detail in :numref:`ad_openad`.
0042
0043 The AD tool exploits the chain rule for computing the first derivative
0044 of a function with respect to a set of input variables. Treating a given
0045 forward code as a composition of operations – each line representing a
0046 compositional element, the chain rule is rigorously applied to the code,
0047 line by line. The resulting tangent linear or adjoint code, then, may be
0048 thought of as the composition in forward or reverse order, respectively,
0049 of the Jacobian matrices of the forward code’s compositional elements.
0050
0051 Some basic algebra
0052 ==================
0053
0054 Let :math:`\cal{M}` be a general nonlinear, model, i.e., a mapping from
0055 the :math:`m`-dimensional space :math:`U \subset \mathbb{R}^m` of input
0056 variables :math:`\vec{u}=(u_1,\ldots,u_m)` (model parameters, initial
0057 conditions, boundary conditions such as forcing functions) to the
0058 :math:`n`-dimensional space :math:`V \subset \mathbb{R}^n` of model output
0059 variable :math:`\vec{v}=(v_1,\ldots,v_n)` (model state, model
0060 diagnostics, objective function, ...) under consideration:
0061
0062 .. math::
0063 \begin{aligned}
0064 {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
b4daa24319 Shre*0065 ~ & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
5f55d7c73d Jeff*0066 {\cal M}(\vec{u})\end{aligned}
0067 :label: fulloperator
b4daa24319 Shre*0068
5f55d7c73d Jeff*0069 The vectors :math:`\vec{u} \in U` and :math:`\vec{v} \in V` may be
0070 represented with respect to some given basis vectors
0071 :math:`{\rm span} (U) = \{ {\vec{e}_i} \}_{i = 1, \ldots , m}` and
0072 :math:`{\rm span} (V) = \{ {\vec{f}_j} \}_{j = 1, \ldots , n}` as
0073
0074 .. math::
0075 \vec{u} \, = \, \sum_{i=1}^{m} u_i \, {\vec{e}_i},
0076 \qquad
0077 \vec{v} \, = \, \sum_{j=1}^{n} v_j \, {\vec{f}_j}
0078
0079 Two routes may be followed to determine the sensitivity of the output
0080 variable :math:`\vec{v}` to its input :math:`\vec{u}`.
0081
0082 Forward or direct sensitivity
0083 -----------------------------
0084
0085 Consider a perturbation to the input variables :math:`\delta \vec{u}`
0086 (typically a single component
0087 :math:`\delta \vec{u} = \delta u_{i} \, {\vec{e}_{i}}`). Their effect on
0088 the output may be obtained via the linear approximation of the model
0089 :math:`{\cal M}` in terms of its Jacobian matrix :math:`M`, evaluated
0090 in the point :math:`u^{(0)}` according to
0091
0092 .. math::
0093 \delta \vec{v} \, = \, M |_{\vec{u}^{(0)}} \, \delta \vec{u}
0094 :label: tangent_linear
0095
0096 with resulting output perturbation :math:`\delta \vec{v}`. In
0097 components
0098 :math:`M_{j i} \, = \, \partial {\cal M}_{j} / \partial u_{i}`, it
0099 reads
0100
0101 .. math::
b4daa24319 Shre*0102 \delta v_{j} \, = \, \sum_{i}
0103 \left. \frac{\partial {\cal M}_{j}}{\partial u_{i}} \right|_{u^{(0)}} \,
5f55d7c73d Jeff*0104 \delta u_{i}
0105 :label: jacobi_matrix
0106
0107 :eq:`tangent_linear` is the tangent linear model (TLM). In contrast
0108 to the full nonlinear model :math:`{\cal M}`, the operator :math:`M`
0109 is just a matrix which can readily be used to find the forward
0110 sensitivity of :math:`\vec{v}` to perturbations in :math:`u`, but if
0111 there are very many input variables :math:`(\gg O(10^{6})` for
0112 large-scale oceanographic application), it quickly becomes prohibitive
0113 to proceed directly as in :eq:`tangent_linear`, if the impact of each
0114 component :math:`{\bf e_{i}}` is to be assessed.
0115
0116 Reverse or adjoint sensitivity
0117 ------------------------------
0118
0119 Let us consider the special case of a scalar objective function
0120 :math:`{\cal J}(\vec{v})` of the model output (e.g., the total meridional
0121 heat transport, the total uptake of CO\ :sub:`2` in the Southern Ocean
0122 over a time interval, or a measure of some model-to-data misfit)
0123
0124 .. math::
0125 \begin{aligned}
0126 \begin{array}{cccccc}
b4daa24319 Shre*0127 {\cal J} \, : & U &
0128 \longrightarrow & V &
5f55d7c73d Jeff*0129 \longrightarrow & \mathbb{R} \\
b4daa24319 Shre*0130 ~ & \vec{u} & \longmapsto & \vec{v}={\cal M}(\vec{u}) &
5f55d7c73d Jeff*0131 \longmapsto & {\cal J}(\vec{u}) = {\cal J}({\cal M}(\vec{u}))
0132 \end{array}\end{aligned}
0133 :label: compo
0134
0135 The perturbation of :math:`{\cal J}` around a fixed point
0136 :math:`{\cal J}_0`,
0137
0138 .. math:: {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
0139
0140 can be expressed in both bases of :math:`\vec{u}` and
0141 :math:`\vec{v}` with respect to their corresponding inner product
0142 :math:`\left\langle \,\, , \,\, \right\rangle`
0143
0144 .. math::
0145 \begin{aligned}
0146 {\cal J} & = \,
b4daa24319 Shre*0147 {\cal J} |_{\vec{u}^{(0)}} \, + \,
0148 \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
5f55d7c73d Jeff*0149 \, + \, O(\delta \vec{u}^2) \\
0150 ~ & = \,
b4daa24319 Shre*0151 {\cal J} |_{\vec{v}^{(0)}} \, + \,
5f55d7c73d Jeff*0152 \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
0153 \, + \, O(\delta \vec{v}^2)
0154 \end{aligned}
0155 :label: deljidentity
0156
0157 (note, that the gradient :math:`\nabla f` is a co-vector, therefore
0158 its transpose is required in the above inner product). Then, using the
0159 representation of :math:`\delta {\cal J} =
0160 \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle`,
0161 the definition of an adjoint operator :math:`A^{\ast}` of a given
0162 operator :math:`A`,
0163
0164 .. math::
0165 \left\langle \, A^{\ast} \vec{x} \, , \, \vec{y} \, \right\rangle =
0166 \left\langle \, \vec{x} \, , \, A \vec{y} \, \right\rangle
0167
0168 which for finite-dimensional vector spaces is just the transpose of
0169 :math:`A`,
0170
0171 .. math:: A^{\ast} \, = \, A^T
0172
0173 and from :eq:`tangent_linear`, :eq:`deljidentity`, we note that
0174 (omitting :math:`|`\ ’s):
0175
0176 .. math::
0177 \delta {\cal J}
0178 \, = \,
0179 \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle
0180 \, = \,
0181 \left\langle \, \nabla _{v}{\cal J}^T \, , \, M \, \delta \vec{u} \, \right\rangle
b4daa24319 Shre*0182 \, = \,
0183 \left\langle \, M^T \, \nabla _{v}{\cal J}^T \, , \,
5f55d7c73d Jeff*0184 \delta \vec{u} \, \right\rangle
0185 :label: inner
0186
0187 With the identity :eq:`deljidentity`, we then find that the gradient
0188 :math:`\nabla _{u}{\cal J}` can be readily inferred by invoking the
0189 adjoint :math:`M^{\ast }` of the tangent linear model :math:`M`
0190
0191 .. math::
0192 \begin{aligned}
b4daa24319 Shre*0193 \nabla _{u}{\cal J}^T |_{\vec{u}} &
5f55d7c73d Jeff*0194 = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}} \\
0195 ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
0196 ~ & = \, \delta \vec{u}^{\ast}
0197 \end{aligned}
0198 :label: adjoint
0199
0200 :eq:`adjoint` is the adjoint model (ADM), in which :math:`M^T` is the
0201 adjoint (here, the transpose) of the tangent linear operator :math:`M`,
0202 :math:`\,\delta \vec{v}^{\ast}` the adjoint variable of the model state
0203 :math:`\vec{v}`, and :math:`\delta \vec{u}^{\ast}` the adjoint
0204 variable of the control variable :math:`\vec{u}`.
0205
0206 The reverse nature of the adjoint calculation can be readily seen as
0207 follows. Consider a model integration which consists of
0208 :math:`\Lambda` consecutive operations
0209 :math:`{\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} ( ...... ( {\cal M}_{\lambda} (......
0210 ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) ))))`, where the
0211 :math:`{\cal M}`\ ’s could be the elementary steps, i.e., single lines in
0212 the code of the model, or successive time steps of the model
0213 integration, starting at step 0 and moving up to step :math:`\Lambda`,
0214 with intermediate
0215 :math:`{\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}` and final
0216 :math:`{\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}`.
0217 Let :math:`{\cal J}` be a cost function which explicitly depends on the
0218 final state :math:`\vec{v}` only (this restriction is for clarity
0219 reasons only). :math:`{\cal J}(u)` may be decomposed according to:
0220
0221 .. math::
b4daa24319 Shre*0222 {\cal J}({\cal M}(\vec{u})) \, = \,
0223 {\cal J} ( {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
5f55d7c73d Jeff*0224 ...... ( {\cal M}_{\lambda} (......
0225 ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))))
0226 :label: compos
0227
0228 Then, according to the chain rule, the forward calculation reads, in
0229 terms of the Jacobi matrices (we’ve omitted the :math:`|`\ ’s which,
0230 nevertheless are important to the aspect of *tangent* linearity; note
0231 also that by definition
0232 :math:`\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
0233 = \nabla_v {\cal J} \cdot \delta \vec{v}` )
0234
0235 .. math::
0236 \begin{aligned}
0237 \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
0238 \nabla_v {\cal J} \cdot M_{\Lambda}
0239 \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
0240 M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
0241 ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
0242 \end{aligned}
0243 :label: forward
0244
0245 whereas in reverse mode we have
0246
0247 .. math::
0248 \boxed{
0249 \begin{aligned}
0250 M^T ( \nabla_v {\cal J}^T) & = \,
0251 M_{0}^T \cdot M_{1}^T
b4daa24319 Shre*0252 \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
5f55d7c73d Jeff*0253 M_{\Lambda}^T \cdot \nabla_v {\cal J}^T \\
0254 ~ & = \, M_{0}^T \cdot M_{1}^T
b4daa24319 Shre*0255 \cdot ...... \cdot
5f55d7c73d Jeff*0256 \nabla_{v^{(\lambda)}} {\cal J}^T \\
0257 ~ & = \, \nabla_u {\cal J}^T
0258 \end{aligned}}
0259 :label: reverse
0260
0261 clearly expressing the reverse nature of the calculation.
0262 :eq:`reverse` is at the heart of automatic adjoint compilers. If the
0263 intermediate steps :math:`\lambda` in :eq:`compos` – :eq:`reverse`
0264 represent the model state (forward or adjoint) at each intermediate time
0265 step as noted above, then correspondingly,
0266 :math:`M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
0267 \delta \vec{v}^{(\lambda-1) \, \ast}` for the adjoint variables. It
0268 thus becomes evident that the adjoint calculation also yields the
0269 adjoint of each model state component :math:`\vec{v}^{(\lambda)}` at
0270 each intermediate step :math:`\lambda`, namely
0271
0272 .. math::
0273 \boxed{
0274 \begin{aligned}
0275 \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
0276 & = \,
b4daa24319 Shre*0277 M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
5f55d7c73d Jeff*0278 M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
0279 ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
0280 \end{aligned}}
0281
0282 in close analogy to :eq:`adjoint` we note in passing that the
0283 :math:`\delta \vec{v}^{(\lambda) \, \ast}` are the Lagrange multipliers
0284 of the model equations which determine :math:`\vec{v}^{(\lambda)}`.
0285
0286 In components, :eq:`adjoint` reads as follows. Let
0287
0288 .. math::
0289 \begin{array}{rclcrcl}
0290 \delta \vec{u} & = &
0291 \left( \delta u_1,\ldots, \delta u_m \right)^T , & \qquad &
0292 \delta \vec{u}^{\ast} \,\, = \,\, \nabla_u {\cal J}^T & = &
b4daa24319 Shre*0293 \left(
0294 \frac{\partial {\cal J}}{\partial u_1},\ldots,
5f55d7c73d Jeff*0295 \frac{\partial {\cal J}}{\partial u_m}
0296 \right)^T \\
0297 \delta \vec{v} & = &
0298 \left( \delta v_1,\ldots, \delta u_n \right)^T , & \qquad &
0299 \delta \vec{v}^{\ast} \,\, = \,\, \nabla_v {\cal J}^T & = &
b4daa24319 Shre*0300 \left(
0301 \frac{\partial {\cal J}}{\partial v_1},\ldots,
5f55d7c73d Jeff*0302 \frac{\partial {\cal J}}{\partial v_n}
0303 \right)^T \\
0304 \end{array}
0305
0306 denote the perturbations in :math:`\vec{u}` and :math:`\vec{v}`,
0307 respectively, and their adjoint variables; further
0308
0309 .. math::
0310 M \, = \, \left(
0311 \begin{array}{ccc}
0312 \frac{\partial {\cal M}_1}{\partial u_1} & \ldots &
0313 \frac{\partial {\cal M}_1}{\partial u_m} \\
0314 \vdots & ~ & \vdots \\
0315 \frac{\partial {\cal M}_n}{\partial u_1} & \ldots &
0316 \frac{\partial {\cal M}_n}{\partial u_m} \\
0317 \end{array}
0318 \right)
0319
0320 is the Jacobi matrix of :math:`{\cal M}` (an :math:`n \times m`
0321 matrix) such that :math:`\delta \vec{v} = M \cdot \delta \vec{u}`, or
0322
0323 .. math::
b4daa24319 Shre*0324 \delta v_{j}
5f55d7c73d Jeff*0325 \, = \, \sum_{i=1}^m M_{ji} \, \delta u_{i}
b4daa24319 Shre*0326 \, = \, \sum_{i=1}^m \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
5f55d7c73d Jeff*0327 \delta u_{i}
0328
0329 Then :eq:`adjoint` takes the form
0330
0331 .. math::
b4daa24319 Shre*0332 \delta u_{i}^{\ast}
5f55d7c73d Jeff*0333 \, = \, \sum_{j=1}^n M_{ji} \, \delta v_{j}^{\ast}
b4daa24319 Shre*0334 \, = \, \sum_{j=1}^n \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
5f55d7c73d Jeff*0335 \delta v_{j}^{\ast}
0336
0337 or
0338
0339 .. math::
0340 \left(
0341 \begin{array}{c}
0342 \left. \frac{\partial}{\partial u_1} {\cal J} \right|_{\vec{u}^{(0)}} \\
0343 \vdots \\
0344 \left. \frac{\partial}{\partial u_m} {\cal J} \right|_{\vec{u}^{(0)}} \\
0345 \end{array}
0346 \right)
0347 \, = \,
0348 \left(
0349 \begin{array}{ccc}
b4daa24319 Shre*0350 \left. \frac{\partial {\cal M}_1}{\partial u_1} \right|_{\vec{u}^{(0)}}
5f55d7c73d Jeff*0351 & \ldots &
0352 \left. \frac{\partial {\cal M}_n}{\partial u_1} \right|_{\vec{u}^{(0)}} \\
0353 \vdots & ~ & \vdots \\
b4daa24319 Shre*0354 \left. \frac{\partial {\cal M}_1}{\partial u_m} \right|_{\vec{u}^{(0)}}
5f55d7c73d Jeff*0355 & \ldots &
0356 \left. \frac{\partial {\cal M}_n}{\partial u_m} \right|_{\vec{u}^{(0)}} \\
0357 \end{array}
0358 \right)
0359 \cdot
0360 \left(
0361 \begin{array}{c}
0362 \left. \frac{\partial}{\partial v_1} {\cal J} \right|_{\vec{v}} \\
0363 \vdots \\
0364 \left. \frac{\partial}{\partial v_n} {\cal J} \right|_{\vec{v}} \\
0365 \end{array}
0366 \right)
0367
0368 Furthermore, the adjoint :math:`\delta v^{(\lambda) \, \ast}` of any
0369 intermediate state :math:`v^{(\lambda)}` may be obtained, using the
0370 intermediate Jacobian (an :math:`n_{\lambda+1} \times n_{\lambda}`
0371 matrix)
0372
0373 .. math::
0374 M_{\lambda} \, = \,
0375 \left(
0376 \begin{array}{ccc}
0377 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
0378 & \ldots &
0379 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
0380 \vdots & ~ & \vdots \\
0381 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1}
0382 & \ldots &
0383 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
0384 \end{array}
0385 \right)
0386
0387 and the shorthand notation for the adjoint variables
0388 :math:`\delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
0389 {\cal J}^T`, :math:`j = 1, \ldots , n_{\lambda}`, for intermediate
0390 components, yielding
0391
0392 .. math::
0393 \begin{aligned}
0394 \left(
0395 \begin{array}{c}
0396 \delta v^{(\lambda) \, \ast}_1 \\
0397 \vdots \\
0398 \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
0399 \end{array}
0400 \right)
0401 \, = &
0402 \left(
0403 \begin{array}{ccc}
0404 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
0405 & \ldots \,\, \ldots &
0406 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
0407 \vdots & ~ & \vdots \\
0408 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
0409 & \ldots \,\, \ldots &
0410 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
0411 \end{array}
0412 \right)
0413 \cdot
0414 %
0415 \\ ~ & ~
0416 \\ ~ &
0417 %
0418 \left(
0419 \begin{array}{ccc}
0420 \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
0421 & \ldots &
0422 \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_1} \\
0423 \vdots & ~ & \vdots \\
0424 \vdots & ~ & \vdots \\
0425 \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}}
0426 & \ldots &
0427 \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
0428 \end{array}
0429 \right)
0430 \cdot \, \ldots \, \cdot
0431 \left(
0432 \begin{array}{c}
0433 \delta v^{\ast}_1 \\
0434 \vdots \\
0435 \delta v^{\ast}_{n} \\
0436 \end{array}
0437 \right)
0438 \end{aligned}
0439
0440 :eq:`forward` and :eq:`reverse` are perhaps clearest in showing the
0441 advantage of the reverse over the forward mode if the gradient
0442 :math:`\nabla _{u}{\cal J}`, i.e., the sensitivity of the cost function
0443 :math:`{\cal J}` with respect to *all* input variables :math:`u` (or
0444 the sensitivity of the cost function with respect to *all* intermediate
0445 states :math:`\vec{v}^{(\lambda)}`) are sought. In order to be able to
0446 solve for each component of the gradient
0447 :math:`\partial {\cal J} / \partial u_{i}` in :eq:`forward` a forward
0448 calculation has to be performed for each component separately, i.e.,
0449 :math:`\delta \vec{u} = \delta u_{i} {\vec{e}_{i}}` for the
0450 :math:`i`-th forward calculation. Then, :eq:`forward` represents the
0451 projection of :math:`\nabla_u {\cal J}` onto the :math:`i`-th
0452 component. The full gradient is retrieved from the :math:`m` forward
0453 calculations. In contrast, :eq:`reverse` yields the full gradient
0454 :math:`\nabla _{u}{\cal J}` (and all intermediate gradients
0455 :math:`\nabla _{v^{(\lambda)}}{\cal J}`) within a single reverse
0456 calculation.
0457
0458 Note, that if :math:`{\cal J}` is a vector-valued function of
0459 dimension :math:`l > 1`, :eq:`reverse` has to be modified according
0460 to
0461
0462 .. math::
b4daa24319 Shre*0463 M^T \left( \nabla_v {\cal J}^T \left(\delta \vec{J}\right) \right)
5f55d7c73d Jeff*0464 \, = \,
0465 \nabla_u {\cal J}^T \cdot \delta \vec{J}
0466
0467 where now :math:`\delta \vec{J} \in \mathbb{R}^l` is a vector of
0468 dimension :math:`l`. In this case :math:`l` reverse simulations have
0469 to be performed for each :math:`\delta J_{k}, \,\, k = 1, \ldots, l`.
0470 Then, the reverse mode is more efficient as long as :math:`l < n`,
0471 otherwise the forward mode is preferable. Strictly, the reverse mode is
0472 called adjoint mode only for :math:`l = 1`.
0473
0474 A detailed analysis of the underlying numerical operations shows that
0475 the computation of :math:`\nabla _{u}{\cal J}` in this way requires
0476 about two to five times the computation of the cost function. Alternatively,
0477 the gradient vector could be approximated by finite differences,
0478 requiring :math:`m` computations of the perturbed cost function.
0479
0480 To conclude, we give two examples of commonly used types of cost
0481 functions:
0482
0483 Example 1: :math:`{\cal J} = v_{j} (T)`
0484 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0485
0486 The cost function consists of the :math:`j`-th component of the model
0487 state :math:`\vec{v}` at time :math:`T`. Then
0488 :math:`\nabla_v {\cal J}^T = {\vec{f}_{j}}` is just the :math:`j`-th
0489 unit vector. The :math:`\nabla_u {\cal J}^T` is the projection of
0490 the adjoint operator onto the :math:`j`-th component
0491 :math:`{\bf f_{j}}`,
0492
0493 .. math::
b4daa24319 Shre*0494 \nabla_u {\cal J}^T
5f55d7c73d Jeff*0495 \, = \, M^T \cdot \nabla_v {\cal J}^T
0496 \, = \, \sum_{i} M^T_{ji} \, {\vec{e}_{i}}
0497
0498 Example 2: :math:`{\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, , \, {\cal H}(\vec{v}) - \vec{d} \, \rangle`
0499 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0500
0501 The cost function represents the quadratic model vs. data misfit.
0502 Here, :math:`\vec{d}` is the data vector and :math:`{\cal H}`
0503 represents the operator which maps the model state space onto the data
0504 space. Then, :math:`\nabla_v {\cal J}` takes the form
0505
0506 .. math::
0507 \begin{aligned}
b4daa24319 Shre*0508 \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
5f55d7c73d Jeff*0509 \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
0510 ~ & = \, 2 \sum_{j} \left\{ \sum_k
b4daa24319 Shre*0511 \frac{\partial {\cal H}_k}{\partial v_{j}}
5f55d7c73d Jeff*0512 \left( {\cal H}_k (\vec{v}) - d_k \right)
0513 \right\} \, {\vec{f}_{j}} \\
0514 \end{aligned}
0515
0516 where :math:`H_{kj} = \partial {\cal H}_k / \partial v_{j}` is the
0517 Jacobi matrix of the data projection operator. Thus, the gradient
0518 :math:`\nabla_u {\cal J}` is given by the adjoint operator, driven
0519 by the model vs. data misfit:
0520
0521 .. math::
b4daa24319 Shre*0522 \nabla_u {\cal J}^T \, = \, 2 \, M^T \cdot
5f55d7c73d Jeff*0523 H \cdot \left( {\cal H}(\vec{v}) - \vec{d} \, \right)
0524
d67096e55c Jeff*0525 .. _sec_autodiff_storage_v_recompute:
0526
5f55d7c73d Jeff*0527 Storing vs. recomputation in reverse mode
0528 -----------------------------------------
0529
0530 We note an important aspect of the forward vs. reverse mode calculation.
0531 Because of the local character of the derivative (a derivative is
0532 defined with respect to a point along the trajectory), the intermediate results
0533 of the model trajectory
0534 :math:`\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})` may be
0535 required to evaluate the intermediate Jacobian
0536 :math:`M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)}`.
0537 This is the case for example for nonlinear expressions (momentum advection,
0538 nonlinear equation of state), and state-dependent conditional statements
0539 (parameterization schemes). In the forward mode, the intermediate
0540 results are required in the same order as computed by the full forward
0541 model :math:`{\cal M}`, but in the reverse mode they are required in the
0542 reverse order. Thus, in the reverse mode the trajectory of the forward
0543 model integration :math:`{\cal M}` has to be stored to be available in
0544 the reverse calculation. Alternatively, the complete model state up to
0545 the point of evaluation has to be recomputed whenever its value is
0546 required.
0547
0548 A method to balance the amount of recomputations vs. storage
0549 requirements is called checkpointing (e.g., Griewank, 1992 :cite:`griewank:92`,
0550 Restrepo et al., 1998 :cite:`restrepo:98`). It is depicted in :numref:`checkpointing` for
0551 a 3-level checkpointing (as an example, we give explicit numbers for a
0552 3-day integration with a 1-hourly timestep in square brackets).
0553
0554
0555 .. figure:: figs/checkpointing.png
0556 :width: 100%
0557 :align: center
0558 :alt: 3-lvl checkpointing schematic figure
0559 :name: checkpointing
0560
0561 Schematic view of intermediate dump and restart for 3-level checkpointing.
0562
0563 - In a first step, the model trajectory is subdivided into
0564 :math:`{n}^{lev3}` subsections [:math:`{n}^{lev3}`\ =3 1-day
0565 intervals], with the label :math:`lev3` for this outermost loop. The
0566 model is then integrated along the full trajectory, and the model
0567 state stored to disk only at every :math:`k_{i}^{lev3}`-th timestep
0568 [i.e. 3 times, at :math:`i = 0,1,2` corresponding to
0569 :math:`k_{i}^{lev3} = 0, 24, 48`]. In addition, the cost function
0570 is computed, if needed.
0571
0572 - In a second step each subsection itself is divided into
0573 :math:`{n}^{lev2}` subsections [:math:`{n}^{lev2}`\ =4 6-hour
0574 intervals per subsection]. The model picks up at the last outermost
0575 dumped state :math:`v_{k_{n}^{lev3}}` and is integrated forward in
0576 time along the last subsection, with the label :math:`lev2` for this
0577 intermediate loop. The model state is now stored to disk at every
0578 :math:`k_{i}^{lev2}`-th timestep [i.e. 4 times, at
0579 :math:`i = 0,1,2,3` corresponding to
0580 :math:`k_{i}^{lev2} = 48, 54, 60, 66`].
0581
0582 - Finally, the model picks up at the last intermediate dump state
0583 :math:`v_{k_{n}^{lev2}}` and is integrated forward in time along
0584 the last subsection, with the label :math:`lev1` for this
0585 intermediate loop. Within this sub-subsection only, parts of the
0586 model state are stored to memory at every timestep [i.e. every hour
0587 :math:`i=0,...,5` corresponding to
0588 :math:`k_{i}^{lev1} = 66, 67, \ldots, 71`]. The final state
0589 :math:`v_n = v_{k_{n}^{lev1}}` is reached and the model state of
0590 all preceding timesteps along the last innermost subsection are
0591 available, enabling integration backwards in time along the last
0592 subsection. The adjoint can thus be computed along this last
0593 subsection :math:`k_{n}^{lev2}`.
0594
0595 This procedure is repeated consecutively for each previous subsection
0596 :math:`k_{n-1}^{lev2}, \ldots, k_{1}^{lev2}` carrying the adjoint
0597 computation to the initial time of the subsection :math:`k_{n}^{lev3}`.
0598 Then, the procedure is repeated for the previous subsection
0599 :math:`k_{n-1}^{lev3}` carrying the adjoint computation to the initial
0600 time :math:`k_{1}^{lev3}`.
0601
0602 For the full model trajectory of
0603 :math:`n^{lev3} \cdot n^{lev2} \cdot n^{lev1}` timesteps the required
0604 storing of the model state was significantly reduced to
0605 :math:`n^{lev2} + n^{lev3}` to disk and roughly :math:`n^{lev1}` to
0606 memory (i.e., for the 3-day integration with a total of 72 timesteps the
0607 model state was stored 7 times to disk and roughly 6 times to memory).
0608 This saving in memory comes at a cost of a required 3 full forward
0609 integrations of the model (one for each checkpointing level). The
0610 optimal balance of storage vs. recomputation certainly depends on the
0611 computing resources available and may be adjusted by adjusting the
0612 partitioning among the :math:`n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1}`.
0613
d67096e55c Jeff*0614 .. _sec_ad_tlm_and_adm:
0615
5f55d7c73d Jeff*0616 TLM and ADM generation in general
0617 =================================
0618
0619 In this section we describe in a general fashion the parts of the code
0620 that are relevant for automatic differentiation using the software tool
0621 TAF. Modifications to use OpenAD are described in :numref:`ad_openad`.
0622
b4daa24319 Shre*0623 The basic flow is as follows:
5f55d7c73d Jeff*0624
0625 ::
0626
0627 the_model_main
0628 |
0629 |--- initialise_fixed
0630 |
0631 |--- #ifdef ALLOW_ADJOINT_RUN
b4daa24319 Shre*0632 | |
5f55d7c73d Jeff*0633 | |--- ctrl_unpack
b4daa24319 Shre*0634 | |
5f55d7c73d Jeff*0635 | |--- adthe_main_loop
0636 | | |
0637 | | |--- initialise_varia
0638 | | |--- ctrl_map_forcing
0639 | | |--- do iloop = 1, nTimeSteps
0640 | | | |--- forward_step
0641 | | | |--- cost_tile
0642 | | | end do
0643 | | |--- cost_final
0644 | | |
0645 | | |--- adcost_final
0646 | | |--- do iloop = nTimeSteps, 1, -1
0647 | | | |--- adcost_tile
0648 | | | |--- adforward_step
0649 | | | end do
0650 | | |--- adctrl_map_forcing
0651 | | |--- adinitialise_varia
0652 | | o
0653 | |
0654 | |--- ctrl_pack
0655 | |
0656 |--- #else
0657 | |
0658 | |--- the_main_loop
0659 | |
0660 | #endif
0661 |
0662 |--- #ifdef ALLOW_GRADIENT_CHECK
0663 | |
0664 | |--- grdchk_main
0665 | o
0666 | #endif
0667 o
0668
0669
0670 If CPP option
0671 :varlink:`ALLOW_AUTODIFF_TAMC` is defined, the driver routine
0672 :filelink:`the_model_main.F <model/src/the_model_main.F>`,
0673 instead of calling :filelink:`the_model_loop.F <model/src/the_main_loop.F>`, invokes the
0674 adjoint of this routine, ``adthe_main_loop.F`` (case
0675 #define :varlink:`ALLOW_ADJOINT_RUN`, or the tangent linear of this routine
0676 ``g_the_main_loop.F`` (case #define :varlink:`ALLOW_TANGENTLINEAR_RUN`), which
0677 are the toplevel routines in terms of automatic differentiation. The
0678 routines ``adthe_main_loop.F`` or ``g_the_main_loop.F`` are generated by
0679 TAF. It contains both the forward integration of the full model, the
0680 cost function calculation, any additional storing that is required for
0681 efficient checkpointing, and the reverse integration of the adjoint
0682 model.
0683
0684 [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
0685
0686 The above structure of ``adthe_main_loop.F`` has been
0687 strongly simplified to focus on the essentials; in particular, no
0688 checkpointing procedures are shown here. Prior to the call of
0689 ``adthe_main_loop.F``, the routine :filelink:`ctrl_unpack.F <pkg/ctrl/ctrl_unpack.F>`
0690 is invoked to unpack the
0691 control vector or initialize the control variables. Following the call
0692 of ``adthe_main_loop.F``, the routine :filelink:`ctrl_pack.F <pkg/ctrl/ctrl_pack.F>`
0693 is invoked to pack the
0694 control vector (cf. :numref:`the_ctrl_vars`). If gradient checks are to
0695 be performed, the option #define :varlink:`ALLOW_GRDCHK` is chosen. In this case
0696 the driver routine :filelink:`grdchk_main.F <pkg/grdchk/grdchk_main.F>`
0697 is called after the gradient has been
0698 computed via the adjoint (cf. :numref:`ad_gradient_check`).
0699
0700 General setup
0701 -------------
0702
0703 In order to configure AD-related setups the following packages need to
0704 be enabled:
0705
0706 - :filelink:`pkg/autodiff`
0707 - :filelink:`pkg/ctrl`
0708 - :filelink:`pkg/cost`
0709 - :filelink:`pkg/grdchk`
0710
0711 The packages are enabled by adding them to your experiment-specific
d8c5b89513 Ivan*0712 configuration file ``packages.conf`` (see :numref:`using_packages`).
5f55d7c73d Jeff*0713
0714 The following AD-specific CPP option files need to be customized:
0715
d8c5b89513 Ivan*0716 - :filelink:`AUTODIFF_OPTIONS.h <pkg/autodiff/AUTODIFF_OPTIONS.h>` This header
0717 file collects CPP options for :filelink:`pkg/autodiff`, :filelink:`pkg/cost`,
0718 :filelink:`pkg/ctrl` as well as AD-unrelated options for the external forcing
0719 package :filelink:`pkg/exf`.
0720
0721 - :filelink:`COST_OPTIONS.h <pkg/cost/COST_OPTIONS.h>` In this header file,
0722 options for different cost functions are set.
0723
0724 - :filelink:`CTRL_OPTIONS.h <pkg/ctrl/CTRL_OPTIONS.h>` In this header file the
0725 control variables are enabled and options for writing and reading the control
0726 vector are set
5f55d7c73d Jeff*0727
0728 - :filelink:`tamc.h <pkg/autodiff/tamc.h>`
0729 This header configures the splitting of the time stepping loop
0730 with respect to the 3-level checkpointing (see section ???).
0731
31584ea246 Jeff*0732 .. _building_adcode_using_taf:
0733
5f55d7c73d Jeff*0734 Building the AD code using TAF
0735 ------------------------------
0736
0737 The build process of an AD code is very similar to building the forward
0738 model. However, depending on which AD code one wishes to generate, and
0739 on which AD tool is available (TAF or TAMC), the following make targets
0740 are available:
0741
0742 +------------------+------------------------+----------------------------------------------------------------------------------+
0743 | *AD-target* | *output* | *description* |
0744 +==================+========================+==================================================================================+
0745 | «MODE»«TOOL»only | «MODE»_«TOOL»_output.f | generates code for «MODE» using «TOOL» |
0746 +------------------+------------------------+----------------------------------------------------------------------------------+
0747 | | | no make dependencies on .F .h |
0748 +------------------+------------------------+----------------------------------------------------------------------------------+
0749 | | | useful for compiling on remote platforms |
0750 +------------------+------------------------+----------------------------------------------------------------------------------+
0751 | «MODE»«TOOL» | «MODE»_«TOOL»_output.f | generates code for «MODE» using «TOOL» |
0752 +------------------+------------------------+----------------------------------------------------------------------------------+
0753 | | | includes make dependencies on .F .h |
0754 +------------------+------------------------+----------------------------------------------------------------------------------+
0755 | | | i.e. input for «TOOL» may be re-generated |
0756 +------------------+------------------------+----------------------------------------------------------------------------------+
0757 | «MODE»all | mitgcmuv\_«MODE» | generates code for «MODE» using «TOOL» |
0758 +------------------+------------------------+----------------------------------------------------------------------------------+
0759 | | | and compiles all code |
0760 +------------------+------------------------+----------------------------------------------------------------------------------+
0761 | | | (use of TAF is set as default) |
0762 +------------------+------------------------+----------------------------------------------------------------------------------+
0763
0764 Here, the following placeholders are used:
0765
0766 - «TOOL»
0767
0768 - TAF
0769
0770 - TAMC
0771
0772 - «MODE»
0773
0774 - ad generates the adjoint model (ADM)
0775
0776 - ftl generates the tangent linear model (TLM)
0777
0778 - svd generates both ADM and TLM for
0779 singular value decomposition (SVD) type calculations
0780
0781 For example, to generate the adjoint model using TAF after routines (``.F``)
0782 or headers (``.h``) have been modified, but without compilation,
0783 type ``make adtaf``; or, to generate the tangent linear model using TAMC without
0784 re-generating the input code, type ``make ftltamconly``.
0785
0786 A typical full build process to generate the ADM via TAF would look like
0787 follows:
0788
0789 ::
0790
0791 % mkdir build
0792 % cd build
d8c5b89513 Ivan*0793 % ../../../tools/genmake2 -mods=../code_ad [ -nocat4ad ]
5f55d7c73d Jeff*0794 % make depend
0795 % make adall
0796
0797
0798 The AD build process in detail
0799 ------------------------------
0800
0801 The ``make «MODE»all`` target consists of the following procedures:
0802
0803 #. A header file ``AD_CONFIG.h`` is generated which contains a CPP option
0804 on which code ought to be generated. Depending on the ``make`` target,
0805 the contents is one of the following:
0806
0807 - #define :varlink:`ALLOW_ADJOINT_RUN`
0808
0809 - #define :varlink:`ALLOW_TANGENTLINEAR_RUN`
0810
d8c5b89513 Ivan*0811 #. If `` -nocat4ad`` is not specified, a single file ``«MODE»_input_code.f`` is
0812 concatenated consisting of all ``.f`` files that are part of the list
0813 ``AD_FILES`` and all ``.flow`` files that are part of the list
0814 ``AD_FLOW_FILES``.
5f55d7c73d Jeff*0815
0816 #. The AD tool is invoked with the ``«MODE»_«TOOL»_FLAGS``. The default AD tool
d8c5b89513 Ivan*0817 flags in :filelink:`genmake2 <tools/genmake2>` can be overwritten by a
0818 :filelink:`tools/adjoint_options` file (similar to the platform-specific
0819 :filelink:`tools/build_options`, see :numref:`genmake2_optfiles`). The AD
0820 tool writes the resulting AD code into the file ``«MODE»_input_code_ad.f``.
5f55d7c73d Jeff*0821
d8c5b89513 Ivan*0822 #. A short sed script :filelink:`tools/adjoint_sed <tools/adjoint_sed>` is
0823 applied to ``«MODE»_input_code_ad.f`` to reinstate :varlink:`myThid` into
0824 the CALL argument list of active file I/O. The result is written to file
0825 ``«MODE»_«TOOL»_output.f``.
0826
0827 #. If the `` -nocat4ad`` option is specified, the concatenation of all ``.f``
0828 files is skipped and instead all necessary files are sent to TAF and for
0829 each file an AD-file is returned.
5f55d7c73d Jeff*0830
0831 #. All routines are compiled and an executable is generated.
0832
0833 The list ``AD_FILES`` and ``.list`` files
0834 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0835
0836 Not all routines are presented to the AD tool. Routines typically hidden
0837 are diagnostics routines which do not influence the cost function, but
0838 may create artificial flow dependencies such as I/O of active variables.
0839
0840 :filelink:`genmake2 <tools/genmake2>` generates a list (or variable) ``AD_FILES`` which contains all
0841 routines that are shown to the AD tool. This list is put together from
0842 all files with suffix ``.list`` that :filelink:`genmake2 <tools/genmake2>` finds in its search
0843 directories. The list file for the core MITgcm routines is :filelink:`model/src/model_ad_diff.list`
0844 Note that no wrapper routine is shown to
0845 TAF. These are either not visible at all to the AD code, or hand-written
0846 AD code is available (see next section).
0847
0848 Each package directory contains its package-specific list file
0849 ``«PKG»_ad_diff.list``. For example, :filelink:`pkg/ptracers` contains the file
0850 :filelink:`ptracers_ad_diff.list <pkg/ptracers_ad_diff.list>`.
0851 Thus, enabling a package will automatically
0852 extend the ``AD_FILES`` list of :filelink:`genmake2 <tools/genmake2>` to incorporate the
0853 package-specific routines. Note that you will need to regenerate the
0854 makefile if you enable a package (e.g., by adding it to ``packages.conf``)
0855 and a ``Makefile`` already exists.
0856
0857 The list ``AD_FLOW_FILES`` and ``.flow`` files
0858 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0859
0860 TAMC and TAF can evaluate user-specified directives that start with a
0861 specific syntax (``CADJ``, ``C$TAF``, ``!$TAF``). The main categories of directives
0862 are ``STORE`` directives and ``FLOW`` directives. Here, we are concerned with
0863 flow directives, store directives are treated elsewhere.
0864
0865 Flow directives enable the AD tool to evaluate how it should treat
0866 routines that are ’hidden’ by the user, i.e. routines which are not
0867 contained in the ``AD_FILES`` list (see previous section), but which
0868 are called in part of the code that the AD tool does see. The flow
0869 directive tell the AD tool:
0870
0871 - which subroutine arguments are input/output
0872
0873 - which subroutine arguments are active
0874
0875 - which subroutine arguments are required to compute the cost
0876
0877 - which subroutine arguments are dependent
0878
0879 The syntax for the flow directives can be found in the AD tool manuals.
0880
0881 :filelink:`genmake2 <tools/genmake2>` generates a list (or variable) ``AD_FLOW_FILES`` which
0882 contains all files with ``suffix.flow`` that it finds in its search
0883 directories. The flow directives for the core MITgcm routines of
0884 :filelink:`eesupp/src/` and :filelink:`model/src/` reside in :filelink:`pkg/autodiff/`. This directory also
0885 contains hand-written adjoint code for the MITgcm WRAPPER (:numref:`wrapper`).
0886
0887 Flow directives for package-specific routines are contained in the
0888 corresponding package directories in the file ``«PKG»_ad.flow``, e.g.,
0889 ptracers-specific directives are in :filelink:`ptracers_ad.flow <pkg/ptracers/ptracers_ad.flow>`.
0890
0891 Store directives for 3-level checkpointing
0892 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0893
0894 The storing that is required at each period of the 3-level checkpointing
0895 is controlled by three top-level headers.
0896
0897 ::
0898
0899 do ilev_3 = 1, nchklev_3
0900 # include ``checkpoint_lev3.h''
0901 do ilev_2 = 1, nchklev_2
0902 # include ``checkpoint_lev2.h''
0903 do ilev_1 = 1, nchklev_1
0904 # include ``checkpoint_lev1.h''
0905
0906 ...
0907
0908 end do
0909 end do
0910 end do
0911
0912 All files ``checkpoint_lev?.h`` are contained in directory :filelink:`pkg/autodiff/`.
0913
31584ea246 Jeff*0914 .. _adoptfile:
0915
5f55d7c73d Jeff*0916 Changing the default AD tool flags: ad_options files
0917 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0918
0919 Hand-written adjoint code
0920 ~~~~~~~~~~~~~~~~~~~~~~~~~
0921
d67096e55c Jeff*0922 .. _pkg_cost_description:
0923
5f55d7c73d Jeff*0924 The cost function (dependent variable)
0925 --------------------------------------
0926
0927 The cost function :math:`{\cal J}` is referred to as the *dependent
0928 variable*. It is a function of the input variables :math:`\vec{u}` via
0929 the composition
0930 :math:`{\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u}))`. The input are
0931 referred to as the *independent variables* or *control variables*. All
0932 aspects relevant to the treatment of the cost function
0933 :math:`{\cal J}` (parameter setting, initialization, accumulation,
0934 final evaluation), are controlled by the package :filelink:`pkg/cost`. The aspects
0935 relevant to the treatment of the independent variables are controlled by
0936 the package :filelink:`pkg/ctrl` and will be treated in the next section.
0937
0938 ::
0939
0940 the_model_main
0941 |
0942 |-- initialise_fixed
0943 | |
0944 | |-- packages_readparms
0945 | |
0946 | |-- cost_readparms
0947 | o
0948 |
0949 |-- the_main_loop
0950 ... |
0951 |-- initialise_varia
0952 | |
0953 | |-- packages_init_variables
0954 | |
0955 | |-- cost_init
0956 | o
0957 |
0958 |-- do iloop = 1,nTimeSteps
0959 | |-- forward_step
0960 | |-- cost_tile
0961 | | |
0962 | | |-- cost_tracer
0963 | end do
0964 |
0965 |-- cost_final
0966 o
0967
0968 Enabling the package
0969 ~~~~~~~~~~~~~~~~~~~~
0970
d8c5b89513 Ivan*0971 :filelink:`pkg/cost <pkg/cost>` is enabled by adding the line ``cost`` to your
0972 file ``packages.conf`` (see :numref:`using_packages`).
5f55d7c73d Jeff*0973
d8c5b89513 Ivan*0974 In general the following packages ought to be enabled simultaneously:
0975 :filelink:`pkg/autodiff <pkg/autodiff>`, :filelink:`pkg/ctrl <pkg/ctrl>`, and
0976 :filelink:`pkg/cost`. The basic CPP option to enable the cost function is
0977 :varlink:`ALLOW_COST`. Each specific cost function contribution has its own
0978 option. For the present example the option is :varlink:`ALLOW_COST_TRACER`. All
0979 cost-specific options are set in :filelink:`COST_OPTIONS.h
0980 <pkg/ctrl/COST_OPTIONS.h>`. Since the cost function is usually used in
5f55d7c73d Jeff*0981 conjunction with automatic differentiation, the CPP option
d8c5b89513 Ivan*0982 :varlink:`ALLOW_AUTODIFF_TAMC` (file :filelink:`AUTODIFF_OPTIONS.h
0983 <pkg/autodiff/AUTODIFF_OPTIONS.h>`) should be defined.
5f55d7c73d Jeff*0984
0985 Initialization
0986 ~~~~~~~~~~~~~~
0987
0988 The initialization of :filelink:`pkg/cost` is readily enabled as soon as
0989 the CPP option :varlink:`ALLOW_COST` is defined.
0990
0991 - The S/R :filelink:`cost_readparms.F </pkg/cost/cost_readparms.F>`
0992 reads runtime flags and parameters from file ``data.cost``.
0993 For the present example the only relevant parameter read is
0994 :varlink:`mult_tracer`. This multiplier enables different cost function
0995 contributions to be switched on (``= 1.``) or off (``= 0.``) at runtime.
0996 For more complex cost functions which involve model vs. data
0997 misfits, the corresponding data filenames and data specifications
0998 (start date and time, period, ...) are read in this S/R.
0999
1000 - The S/R :filelink:`cost_init_varia.F </pkg/cost/cost_init_varia.F>`
1001 initializes the different cost function contributions. The
1002 contribution for the present example is :varlink:`objf_tracer` which is
1003 defined on each tile (bi,bj).
1004
1005 Accumulation
1006 ~~~~~~~~~~~~
1007
1008 The ’driver’ routine :filelink:`cost_tile.F </pkg/cost/cost_tile.F>`
1009 is called at the end of each time
1010 step. Within this ’driver’ routine, S/R are called for each of the
1011 chosen cost function contributions. In the present example
1012 (:varlink:`ALLOW_COST_TRACER`), S/R :filelink:`cost_tracer.F </pkg/cost/cost_tracer.F>` is called. It accumulates
1013 :varlink:`objf_tracer` according to eqn. (ref:ask-the-author).
1014
d67096e55c Jeff*1015 .. _sec_ad_finalize_contribtuions:
1016
5f55d7c73d Jeff*1017 Finalize all contributions
1018 ~~~~~~~~~~~~~~~~~~~~~~~~~~
1019
1020 At the end of the forward integration S/R :filelink:`cost_final.F </pkg/cost/cost_final.F>` is called. It
1021 accumulates the total cost function :varlink:`fc` from each contribution and
1022 sums over all tiles:
1023
1024 .. math::
b4daa24319 Shre*1025 {\cal J} \, = \,
1026 {\rm fc} \, = \,
5f55d7c73d Jeff*1027 {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1028 {\rm objf\_tracer}(bi,bj) \, + \, ...
1029
1030 The total cost function :varlink:`fc` will be the ’dependent’ variable in the
1031 argument list for TAF, i.e.,
1032
1033 ::
1034
1035 taf -output 'fc' ...
1036
1037 ::
1038
1039 *************
1040 the_main_loop
1041 *************
1042 |
1043 |--- initialise_varia
1044 | |
1045 | ...
1046 | |--- packages_init_varia
1047 | | |
1048 | | ...
1049 | | |--- #ifdef ALLOW_ADJOINT_RUN
1050 | | | call ctrl_map_ini
1051 | | | call cost_ini
1052 | | | #endif
1053 | | ...
1054 | | o
1055 | ...
1056 | o
1057 ...
1058 |--- #ifdef ALLOW_ADJOINT_RUN
1059 | call ctrl_map_forcing
1060 | #endif
1061 ...
1062 |--- #ifdef ALLOW_TAMC_CHECKPOINTING
1063 do ilev_3 = 1,nchklev_3
1064 | do ilev_2 = 1,nchklev_2
1065 | do ilev_1 = 1,nchklev_1
1066 | iloop = (ilev_3-1)*nchklev_2*nchklev_1 +
1067 | (ilev_2-1)*nchklev_1 + ilev_1
1068 | #else
1069 | do iloop = 1, nTimeSteps
1070 | #endif
1071 | |
1072 | |--- call forward_step
1073 | |
1074 | |--- #ifdef ALLOW_COST
1075 | | call cost_tile
1076 | | #endif
1077 | |
1078 | | enddo
1079 | o
1080 |
1081 |--- #ifdef ALLOW_COST
1082 | call cost_final
1083 | #endif
1084 o
1085
1086 .. _the_ctrl_vars:
1087
1088 The control variables (independent variables)
1089 ---------------------------------------------
1090
1091 The control variables are a subset of the model input (initial
1092 conditions, boundary conditions, model parameters). Here we identify
1093 them with the variable :math:`\vec{u}`. All intermediate variables
1094 whose derivative with respect to control variables do not vanish are called
1095 active variables. All subroutines whose derivative with respect to the control
1096 variables don’t vanish are called active routines. Read and write
1097 operations from and to file can be viewed as variable assignments.
1098 Therefore, files to which active variables are written and from which
1099 active variables are read are called active files. All aspects relevant
1100 to the treatment of the control variables (parameter setting,
1101 initialization, perturbation) are controlled by the package :filelink:`pkg/ctrl`.
1102
1103 ::
1104
1105 the_model_main
1106 |
1107 |-- initialise_fixed
1108 | |
1109 | |-- packages_readparms
1110 | |
1111 | |-- cost_readparms
1112 | o
1113 |
1114 |-- the_main_loop
1115 ... |
1116 |-- initialise_varia
1117 | |
1118 | |-- packages_init_variables
1119 | |
1120 | |-- cost_init
1121 | o
1122 |
1123 |-- do iloop = 1,nTimeSteps
1124 | |-- forward_step
1125 | |-- cost_tile
1126 | | |
1127 | | |-- cost_tracer
1128 | end do
1129 |
1130 |-- cost_final
1131 o
1132
1133
1134 :filelink:`genmake2 <tools/genmake2>` and CPP options
1135 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1136
d8c5b89513 Ivan*1137 Package :filelink:`pkg/ctrl` is enabled by adding the line ``ctrl`` to your
1138 file ``packages.conf``. Each control variable is enabled via its own CPP
1139 option in :filelink:`CTRL_OPTIONS.h <pkg/ctrl/CTRL_OPTIONS.h>`.
5f55d7c73d Jeff*1140
1141 Initialization
1142 ~~~~~~~~~~~~~~
1143
1144 - The S/R :filelink:`ctrl_readparms.F </pkg/ctrl/ctrl_readparms.F>`
1145 reads runtime flags and parameters from file ``data.ctrl``.
1146 For the present example the file contains the file names of each
1147 control variable that is used. In addition, the number of wet
1148 points for each control variable and the net dimension of the space
1149 of control variables (counting wet points only) :varlink:`nvarlength` is
1150 determined. Masks for wet points for each tile (bi,bj) and
1151 vertical layer k are generated for the three relevant
1152 categories on the C-grid: :varlink:`nWetCtile` for tracer fields,
1153 :varlink:`nWetWtile` for zonal velocity fields, :varlink:`nWetStile` for
1154 meridional velocity fields.
1155
1156 - Two important issues related to the handling of the control
1157 variables in MITgcm need to be addressed. First, in order to save
1158 memory, the control variable arrays are not kept in memory, but
1159 rather read from file and added to the initial fields during the
1160 model initialization phase. Similarly, the corresponding adjoint
1161 fields which represent the gradient of the cost function with respect to the
1162 control variables are written to file at the end of the adjoint
1163 integration. Second, in addition to the files holding the 2-D
1164 and 3-D control variables and the corresponding cost gradients,
1165 a 1-D control vector and gradient vector are written to file.
1166 They contain only the wet points of the control variables and the
1167 corresponding gradient. This leads to a significant data
1168 compression. Furthermore, an option is available
1169 (:varlink:`ALLOW_NONDIMENSIONAL_CONTROL_IO`) to non-dimensionalize the
1170 control and gradient vector, which otherwise would contain
1171 different pieces of different magnitudes and units. Finally, the
1172 control and gradient vector can be passed to a minimization routine
1173 if an update of the control variables is sought as part of a
1174 minimization exercise.
1175
1176 The files holding fields and vectors of the control variables and
1177 gradient are generated and initialized in S/R :filelink:`ctrl_unpack.F </pkg/ctrl/ctrl_unpack.F>`.
1178
1179 Perturbation of the independent variables
1180 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1181
1182 The dependency flow for differentiation with respect to the controls starts with
1183 adding a perturbation onto the input variable, thus defining the
1184 independent or control variables for TAF. Three types of controls may be
1185 considered:
1186
1187 - Consider as an example the initial tracer distribution :varlink:`pTracer` as
1188 control variable. After :varlink:`pTracer` has been initialized in
1189 :filelink:`ptracers_init_varia.F <pkg/ptracers/ptracers_init_varia.F>`
1190 (dynamical variables such as temperature and salinity are
1191 initialized in :filelink:`ini_fields.F <>model/src/ini_fields.F>`), a perturbation anomaly is added to
1192 the field in S/R :filelink:`ctrl_map_ini.F </pkg/ctrl/ctrl_map_ini.F>`:
1193
1194 .. math::
1195 \begin{aligned}
1196 u & = \, u_{[0]} \, + \, \Delta u \\
1197 {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
1198 \end{aligned}
1199 :label: perturb
1200
1201 :varlink:`xx_tr1` is a 3-D global array holding the perturbation. In
1202 the case of a simple sensitivity study this array is identical to
1203 zero. However, it’s specification is essential in the context of
1204 automatic differentiation since TAF treats the corresponding line
1205 in the code symbolically when determining the differentiation chain
1206 and its origin. Thus, the variable names are part of the argument
1207 list when calling TAF:
1208
1209 ::
1210
1211 taf -input 'xx_tr1 ...' ...
1212
1213 Now, as mentioned above, MITgcm avoids maintaining an array for each
1214 control variable by reading the perturbation to a temporary array
1215 from file. To ensure the symbolic link to be recognized by TAF, a
1216 scalar dummy variable ``xx_tr1_dummy`` is introduced and an ’active
1217 read’ routine of the adjoint support package :filelink:`pkg/autodiff` is
1218 invoked. The read-procedure is tagged with the variable
1219 ``xx_tr1_dummy`` enabling TAF to recognize the initialization of
1220 the perturbation. The modified call of TAF thus reads
1221
1222 ::
1223
1224 taf -input 'xx_tr1_dummy ...' ...
1225
1226 and the modified operation (to perturb) in the code takes on the
1227 form
1228
1229 ::
1230
b4daa24319 Shre*1231 call active_read_xyz(
5f55d7c73d Jeff*1232 & ..., tmpfld3d, ..., xx_tr1_dummy, ... )
1233
1234 tr1(...) = tr1(...) + tmpfld3d(...)
1235
1236 Note that reading an active variable corresponds to a variable
1237 assignment. Its derivative corresponds to a write statement of the
1238 adjoint variable, followed by a reset. The ’active file’ routines
1239 have been designed to support active read and corresponding adjoint
1240 active write operations (and vice versa).
1241
1242 - The handling of boundary values as control variables proceeds
1243 exactly analogous to the initial values with the symbolic
1244 perturbation taking place in S/R
1245 :filelink:`ctrl_map_forcing.F </pkg/ctrl/ctrl_map_forcing.F>`.
1246 Note however
1247 an important difference: Since the boundary values are time
1248 dependent with a new forcing field applied at each time step, the
1249 general problem may be thought of as a new control variable at each
1250 time step (or, if the perturbation is averaged over a certain
1251 period, at each :math:`N` timesteps), i.e.,
1252
1253 .. math::
1254 u_{\rm forcing} \, = \,
1255 \{ \, u_{\rm forcing} ( t_n ) \, \}_{
1256 n \, = \, 1, \ldots , {\rm nTimeSteps} }
1257
1258 In the current example an equilibrium state is considered, and
1259 only an initial perturbation to surface forcing is applied with
1260 respect to the equilibrium state. A time dependent treatment of the
1261 surface forcing is implemented in the ECCO environment, involving
1262 the calendar (:filelink:`pkg/cal`) and external forcing (:filelink:`pkg/exf`) packages.
1263
1264 - This routine is not yet implemented, but would proceed proceed
1265 along the same lines as the initial value sensitivity. The mixing
1266 parameters :varlink:`diffkr` and :varlink:`kapgm` are currently added as controls
1267 in :filelink:`ctrl_map_ini.F </pkg/ctrl/ctrl_map_ini.F>`.
1268
b4daa24319 Shre*1269 .. _sec_autodiff_output_adj_vars:
d67096e55c Jeff*1270
5f55d7c73d Jeff*1271 Output of adjoint variables and gradient
1272 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1273
1274 Several ways exist to generate output of adjoint fields.
1275
1276 - In :filelink:`ctrl_map_ini.F </pkg/ctrl/ctrl_map_ini.F>`, :filelink:`ctrl_map_forcing.F </pkg/ctrl/ctrl_map_forcing.F>`:
1277
1278 - The control variable fields ``xx\_«...»``: before the forward integration, the control variables are read
1279 from file ``«xx\_ ...»`` and added to the model field.
1280
1281 - The adjoint variable fields ``adxx\_«...»``, i.e., the gradient
1282 :math:`\nabla _{u}{\cal J}` for each control variable:
1283 after the adjoint integration the corresponding adjoint
1284 variables are written to ``adxx\_«...»``.
1285
b4daa24319 Shre*1286 - In :filelink:`ctrl_unpack.F </pkg/ctrl/ctrl_unpack.F>`, :filelink:`ctrl_pack.F </pkg/ctrl/ctrl_pack.F>`:
5f55d7c73d Jeff*1287
1288 - The control vector ``vector_ctrl``:
1289 at the very beginning of the model initialization, the updated
1290 compressed control vector is read (or initialized) and
1291 distributed to 2-D and 3-D control variable fields.
1292
1293 - The gradient vector ``vector_grad``:
1294 at the very end of the adjoint integration, the 2-D and
1295 3-D adjoint variables are read, compressed to a single vector
1296 and written to file.
1297
1298 - In addition to writing the gradient at the end of the
1299 forward/adjoint integration, many more adjoint variables of the
1300 model state at intermediate times can be written using S/R
1301 :filelink:`addummy_in_stepping.F </pkg/autodiff/addummy_in_stepping.F>`.
1302 The procedure is
1303 enabled using via the CPP-option :varlink:`ALLOW_AUTODIFF_MONITOR` (file
d8c5b89513 Ivan*1304 :filelink:`AUTODIFF_OPTIONS.h <pkg/autodiff/AUTODIFF_OPTIONS.h>`).
5f55d7c73d Jeff*1305 To be part of the adjoint code, the
1306 corresponding S/R :filelink:`dummy_in_stepping.F <pkg/autodiff/dummy_in_stepping.F>`
1307 has to be called in the
1308 forward model (S/R :filelink:`the_main_loop.F <model/src/the_main_loop.F>`) at the appropriate place. The
1309 adjoint common blocks are extracted from the adjoint code via the
1310 header file :filelink:`adcommon.h </pkg/autodiff/adcommon.h>`.
1311
1312 :filelink:`dummy_in_stepping.F <pkg/autodiff/dummy_in_stepping.F>` is essentially empty, the corresponding adjoint
1313 routine is hand-written rather than generated automatically.
1314 Appropriate flow directives
1315 (:filelink:`dummy_in_stepping.flow <pkg/autodiff/dummy_in_stepping.flow>`)
1316 ensure that
1317 TAMC does not automatically generate :filelink:`addummy_in_stepping.F <pkg/autodiff/addummy_in_stepping.F>` by
1318 trying to differentiate :filelink:`dummy_in_stepping.F <pkg/autodiff/dummy_in_stepping.F>`, but instead refers to
1319 the hand-written routine.
1320
1321 :filelink:`dummy_in_stepping.F <pkg/autodiff/dummy_in_stepping.F>` is called in the forward code at the beginning
1322 of each timestep, before the call to :filelink:`model/src/dynamics.F`, thus ensuring that
1323 :filelink:`addummy_in_stepping.F <pkg/autodiff/addummy_in_stepping.F>` is called at the end of each timestep in the
1324 adjoint calculation, after the call to :filelink:`addummy_in_dynamics.F <pkg/autodiff/addummy_in_dynamics.F>`.
1325
1326 :filelink:`addummy_in_stepping.F <pkg/autodiff/addummy_in_stepping.F>`
1327 includes the header files :filelink:`adcommon.h </pkg/autodiff/adcommon.h>`. This
1328 header file is also hand-written. It contains the common blocks
1329 :varlink:`addynvars_r`, :varlink:`addynvars_cd`, :varlink:`addynvars_diffkr`,
1330 :varlink:`addynvars_kapgm`, :varlink:`adtr1_r`, :varlink:`adffields`, which have
1331 been extracted from the adjoint code to enable access to the adjoint
1332 variables.
1333
1334 **WARNING:** If the structure of the common blocks :varlink:`dynvars_r`,
1335 :varlink:`dynvars_cd`, etc., changes similar changes will occur in the
1336 adjoint common blocks. Therefore, consistency between the
b4daa24319 Shre*1337 TAMC-generated common blocks and those in
5f55d7c73d Jeff*1338 :filelink:`adcommon.h </pkg/autodiff/adcommon.h>` have to be
1339 checked.
1340
1341 Control variable handling for optimization applications
1342 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1343
1344 In optimization mode the cost function :math:`{\cal J}(u)` is sought
1345 to be minimized with respect to a set of control variables
1346 :math:`\delta {\cal J} \, = \, 0`, in an iterative manner. The
1347 gradient :math:`\nabla _{u}{\cal J} |_{u_{[k]}}` together with the
1348 value of the cost function itself :math:`{\cal J}(u_{[k]})` at
1349 iteration step :math:`k` serve as input to a minimization routine
b4daa24319 Shre*1350 (e.g. quasi-Newton method, conjugate gradient, ... (Gilbert and Lemaréchal, 1989
5f55d7c73d Jeff*1351 :cite:`gil-lem:89`) to compute an update in the control
1352 variable for iteration step :math:`k+1`:
1353
1354 .. math::
1355 u_{[k+1]} \, = \, u_{[0]} \, + \, \Delta u_{[k+1]}
1356 \quad \mbox{satisfying} \quad
1357 {\cal J} \left( u_{[k+1]} \right) \, < \, {\cal J} \left( u_{[k]} \right)
1358
1359 :math:`u_{[k+1]}` then serves as input for a forward/adjoint run to
1360 determine :math:`{\cal J}` and :math:`\nabla _{u}{\cal J}` at
1361 iteration step :math:`k+1`. :numref:`forward-adj_flow` sketches the flow
1362 between forward/adjoint model and the minimization routine.
1363
1364 .. figure:: figs/forward-adj_flow.*
1365 :width: 100%
1366 :align: center
1367 :alt: flow between forward/adjoint model and the minimization
1368 :name: forward-adj_flow
1369
1370 Flow between the forward/adjoint model and the minimization routine.
1371
b4daa24319 Shre*1372 The routines :filelink:`ctrl_unpack.F </pkg/ctrl/ctrl_unpack.F>` and
5f55d7c73d Jeff*1373 :filelink:`ctrl_pack.F </pkg/ctrl/ctrl_pack.F>` provide the link between
1374 the model and the minimization routine. As described in Section
1375 ref:ask-the-author the :filelink:`ctrl_unpack.F </pkg/ctrl/ctrl_unpack.F>`
1376 and :filelink:`ctrl_pack.F </pkg/ctrl/ctrl_pack.F>` routines read and write
1377 control and gradient vectors which are compressed to contain only wet
1378 points, in addition to the full 2-D and 3-D fields. The
1379 corresponding I/O flow is shown in :numref:`forward-adj_io`:
1380
1381 .. figure:: figs/forward-adj_io.*
1382 :width: 100%
1383 :align: center
1384 :alt: forward/adjoint model I/O
1385 :name: forward-adj_io
1386
1387 Flow chart showing I/O in the forward/adjoint model.
1388
1389
d8c5b89513 Ivan*1390 :filelink:`ctrl_unpack.F </pkg/ctrl/ctrl_unpack.F>` reads the updated control
1391 vector ``vector_ctrl_<k>``. It distributes the different control variables to
1392 2-D and 3-D files ``xx_«...»<k>``. At the start of the forward integration the
1393 control variables are read from ``xx_«...»<k>`` and added to the field.
1394 Correspondingly, at the end of the adjoint integration the adjoint fields are
1395 written to ``adxx_«...»<k>``, again via the active file routines. Finally,
1396 :filelink:`ctrl_pack.F </pkg/ctrl/ctrl_pack.F>` collects all adjoint files and
1397 writes them to the compressed vector file ``vector_grad_<k>``.
5f55d7c73d Jeff*1398
1399
1400 .. _ad_gradient_check:
1401
1402 The gradient check package
1403 ==========================
1404
1405 An indispensable test to validate the gradient computed via the adjoint
1406 is a comparison against finite difference gradients. The gradient check
1407 package :filelink:`pkg/grdchk` enables such tests in a straightforward and easy
1408 manner. The driver routine :filelink:`grdchk_main.F <pkg/grdchk/grdchk_main.F>` is called from
1409 :filelink:`the_model_main.F <model/src/the_model_main.F>` after
1410 the gradient has been computed via the adjoint
1411 model (cf. flow chart ???).
1412
1413 The gradient check proceeds as follows: The :math:`i-`\ th component of
1414 the gradient :math:`(\nabla _{u}{\cal J}^T)_i` is compared with the
1415 following finite-difference gradient:
1416
1417 .. math::
1418 \left(\nabla _{u}{\cal J}^T \right)_i \quad \text{ vs. } \quad
1419 \frac{\partial {\cal J}}{\partial u_i} \, = \,
1420 \frac{ {\cal J}(u_i + \epsilon) - {\cal J}(u_i)}{\epsilon}
1421
1422 A gradient check at point :math:`u_i` may generally considered to be
1423 successful if the deviation of the ratio between the adjoint and the
1424 finite difference gradient from unity is less than 1 percent,
1425
1426 .. math::
b4daa24319 Shre*1427 1 \, - \,
5f55d7c73d Jeff*1428 \frac{({\rm grad}{\cal J})_i (\text{adjoint})}
1429 {({\rm grad}{\cal J})_i (\text{finite difference})} \, < 1 \%
1430
1431 Code description
1432 ----------------
1433
1434
1435 Code configuration
1436 ------------------
1437
1438 The relevant CPP precompile options are set in the following files:
1439
1440 - :filelink:`CPP_OPTIONS.h <model/inc/CPP_OPTIONS.h>`
1441 - Together with the flag :varlink:`ALLOW_ADJOINT_RUN`, define the flag :varlink:`ALLOW_GRADIENT_CHECK`.
1442
1443 The relevant runtime flags are set in the files:
1444
1445 - ``data.pkg``
1446 - Set :varlink:`useGrdchk` ``= .TRUE.``
1447
1448 - ``data.grdchk``
1449
1450 - :varlink:`grdchk_eps`
1451
1452 - :varlink:`nbeg`
1453
1454 - :varlink:`nstep`
1455
1456 - :varlink:`nend`
1457
1458 - :varlink:`grdchkvarindex`
1459
1460 ::
1461
1462 the_model_main
1463 |
1464 |-- ctrl_unpack
1465 |-- adthe_main_loop - unperturbed cost function and
1466 |-- ctrl_pack adjoint gradient are computed here
1467 |
1468 |-- grdchk_main
1469 |
1470 |-- grdchk_init
1471 |-- do icomp=... - loop over control vector elements
1472 |
1473 |-- grdchk_loc - determine location of icomp on grid
1474 |
1475 |-- grdchk_getxx - get control vector component from file
1476 | perturb it and write back to file
b4daa24319 Shre*1477 |-- grdchk_getadxx - get gradient component calculated
5f55d7c73d Jeff*1478 | via adjoint
1479 |-- the_main_loop - forward run and cost evaluation
1480 | with perturbed control vector element
1481 |-- calculate ratio of adj. vs. finite difference gradient
1482 |
1483 |-- grdchk_setxx - Reset control vector element
1484 |
1485 |-- grdchk_print - print results
1486
d67096e55c Jeff*1487 .. _sec_autodiff_diva:
5f55d7c73d Jeff*1488
1489 Adjoint dump & restart – divided adjoint (DIVA)
1490 ===============================================
1491
d8c5b89513 Ivan*1492 Authors: Patrick Heimbach & Geoffrey Gebbie, 07-Mar-2003
5f55d7c73d Jeff*1493
1494 ***NOTE:THIS SECTION IS SUBJECT TO CHANGE. IT REFERS TO TAF-1.4.26.**
1495
d8c5b89513 Ivan*1496 Old TAF versions are incomplete and have problems with both TAF options
1497 ``-pure`` and ``-mpi``. At the time of the latest update, the current version
1498 of TAF is 6.1.5
5f55d7c73d Jeff*1499
1500 Introduction
1501 ------------
1502
1503 Most high performance computing (HPC) centers require the use of batch
1504 jobs for code execution. Limits in maximum available CPU time and memory
1505 may prevent the adjoint code execution from fitting into any of the
1506 available queues. This presents a serious limit for large scale / long
1507 time adjoint ocean and climate model integrations. The MITgcm itself
1508 enables the split of the total model integration into sub-intervals
1509 through standard dump/restart of/from the full model state. For a
1510 similar procedure to run in reverse mode, the adjoint model requires, in
1511 addition to the model state, the adjoint model state, i.e., all variables
1512 with derivative information which are needed in an adjoint restart. This
1513 adjoint dump & restart is also termed ’divided adjoint (DIVA)’.
1514
1515 For this to work in conjunction with automatic differentiation, an AD
1516 tool needs to perform the following tasks:
1517
1518 #. identify an adjoint state, i.e., those sensitivities whose
1519 accumulation is interrupted by a dump/restart and which influence the
1520 outcome of the gradient. Ideally, this state consists of
1521
1522 - the adjoint of the model state,
1523
1524 - the adjoint of other intermediate results (such as control
1525 variables, cost function contributions, etc.)
1526
1527 - bookkeeping indices (such as loop indices, etc.)
1528
1529 #. generate code for storing and reading adjoint state variables
1530
1531 #. generate code for bookkeeping , i.e., maintaining a file with index
1532 information
1533
1534 #. generate a suitable adjoint loop to propagate adjoint values for
1535 dump/restart with a minimum overhead of adjoint intermediate values.
1536
1537 TAF (but not TAMC!) generates adjoint code which performs the above
1538 specified tasks. It is closely tied to the adjoint multi-level
1539 checkpointing. The adjoint state is dumped (and restarted) at each step
1540 of the outermost checkpointing level and adjoint integration is
1541 performed over one outermost checkpointing interval. Prior to the
1542 adjoint computations, a full forward sweep is performed to generate the
1543 outermost (forward state) tapes and to calculate the cost function. In
1544 the current implementation, the forward sweep is immediately followed by
1545 the first adjoint leg. Thus, in theory, the following steps are
1546 performed (automatically)
1547
d8c5b89513 Ivan*1548 - **1st model call:**
1549 This is the case if file ``costfinal`` does *not* exist. S/R
5f55d7c73d Jeff*1550 ``mdthe_main_loop.f`` (generated by TAF) is called.
1551
1552 #. calculate forward trajectory and dump model state after each
1553 outermost checkpointing interval to files ``tapelev3``
1554
1555 #. calculate cost function ``fc`` and write it to file ``costfinal``
1556
1557 - **2nd and all remaining model calls:**
1558 This is the case if file costfinal *does* exist. S/R
1559 ``adthe_main_loop.f`` (generated by TAF) is called.
1560
1561 #. (forward run and cost function call is avoided since all values
1562 are known)
1563
1564 - if 1st adjoint leg:
1565 create index file ``divided.ctrl`` which contains info on current
1566 checkpointing index :math:`ilev3`
1567
1568 - if not :math:`i`-th adjoint leg:
1569 adjoint picks up at :math:`ilev3 = nlev3-i+1` and runs to
1570 :math:`nlev3 - i`
1571
1572 #. perform adjoint leg from :math:`nlev3-i+1` to :math:`nlev3 - i`
1573
1574 #. dump adjoint state to file ``snapshot``
1575
1576 #. dump index file ``divided.ctrl`` for next adjoint leg
1577
1578 #. in the last step the gradient is written.
1579
1580 A few modifications were performed in the forward code, obvious ones
1581 such as adding the corresponding TAF-directive at the appropriate place,
1582 and less obvious ones (avoid some re-initializations, when in an
1583 intermediate adjoint integration interval).
1584
1585 [For TAF-1.4.20 a number of hand-modifications were necessary to
1586 compensate for TAF bugs. Since we refer to TAF-1.4.26 onwards, these
1587 modifications are not documented here].
1588
d8c5b89513 Ivan*1589 .. _diva_recipe:
5f55d7c73d Jeff*1590
d8c5b89513 Ivan*1591 Recipe for divided adjoint code generation
1592 ------------------------------------------
5f55d7c73d Jeff*1593
d8c5b89513 Ivan*1594 Verification experiment :filelink:`lab_sea <verification/lab_sea>` tests the
1595 divided adjoint and serves as an example of how to configure the code.
5f55d7c73d Jeff*1596
d8c5b89513 Ivan*1597 #. define ``USE_DIVA=1``, either as an environment variable (e.g., in bash:
1598 ``export USE_DIVA=1``), in a ``genmake_local`` file in the ``build``
1599 directory, or in your build options file. This will instruct
1600 :filelink:`genmake2 <tools/genmake2>` to generate TAF options (``-pure``)
1601 for divided adjoint generation.
5f55d7c73d Jeff*1602
d8c5b89513 Ivan*1603 #. In a local copy of :filelink:`AUTODIFF_OPTIONS.h
1604 <pkg/autodiff/AUTODIFF_OPTIONS.h>` set:
5f55d7c73d Jeff*1605
d8c5b89513 Ivan*1606 - #define :varlink:`ALLOW_DIVIDED_ADJOINT`
5f55d7c73d Jeff*1607
d8c5b89513 Ivan*1608 to enable code for divided adjoint.
5f55d7c73d Jeff*1609
d8c5b89513 Ivan*1610 #. If using MPI, make sure that the paths to mpi-header files, such as
1611 ``mpif.h``, are know to :filelink:`genmake2 <tools/genmake2>` (as usual, via
1612 the build options file, see also :numref:`diva_mpi`).
5f55d7c73d Jeff*1613
d8c5b89513 Ivan*1614 #. Run the usual sequence for generating the Makefile and the AD-code.
5f55d7c73d Jeff*1615
d8c5b89513 Ivan*1616 ::
5f55d7c73d Jeff*1617
d8c5b89513 Ivan*1618 ${ROOTDIR}/tools/genmake2 -mods=../code_ad -nocat4ad [ other options ]
1619 make depend
1620 make adtaf
5f55d7c73d Jeff*1621
d8c5b89513 Ivan*1622 the ``-nocat4ad`` option is not necessary, but will generate individual
1623 AD-files for each forward file sent to TAF. The adjoint code now contains
1624 subroutines (in ``the_main_loop_ad.f``):
5f55d7c73d Jeff*1625
d8c5b89513 Ivan*1626 - ``adthe_main_loop_ad``:
1627 Is responsible for the forward trajectory, storing of outermost
1628 checkpoint levels to file, computation of cost function, and
1629 storing of cost function to file (1st step).
5f55d7c73d Jeff*1630
d8c5b89513 Ivan*1631 - ``adthe_main_loop``:
1632 Is responsible for computing one adjoint leg, dump adjoint state
1633 to file and write index info to file (2nd and consecutive
1634 steps).
5f55d7c73d Jeff*1635
d8c5b89513 Ivan*1636 Then compile with ``make adall`` (the ``make adtaf`` step is not necessary
1637 unless you want to inspect the TAF-generated code before compiling).
5f55d7c73d Jeff*1638
d8c5b89513 Ivan*1639 .. _diva_mpi:
5f55d7c73d Jeff*1640
d8c5b89513 Ivan*1641 Special considerations for multi processor (MPI) runs
1642 -----------------------------------------------------
5f55d7c73d Jeff*1643
d8c5b89513 Ivan*1644 On the machine where you execute the code (most likely not the machine where
1645 you run TAF) find the includes directory for MPI containing ``mpif.h``. Either
1646 copy ``mpif.h`` to the machine where you preprocess the code (generate the
1647 ``.f`` files) before TAF-ing, or add the path to the includes directory to your
1648 :filelink:`genmake2 <tools/genmake2>` platform setup. TAF needs some MPI
1649 parameter settings (essentially ``mpi_comm_world`` and ``mpi_integer``) to
1650 incorporate those in the adjoint code. The ``-mpi`` will be added to the TAF
1651 argument list automatically.
5f55d7c73d Jeff*1652
1653 .. _ad_openad:
1654
1655 Adjoint code generation using OpenAD
1656 ====================================
1657
1658 Authors: Jean Utke, Patrick Heimbach and Chris Hill
1659
1660 Introduction
1661 ------------
1662
1663 The development of OpenAD was initiated as part of the ACTS (Adjoint
1664 Compiler Technology & Standards) project funded by the NSF Information
1665 Technology Research (ITR) program. The main goals for OpenAD initially
1666 defined for the ACTS project are:
1667
1668 #. develop a flexible, modular, open source tool that can generate
1669 adjoint codes of numerical simulation programs,
1670
1671 #. establish a platform for easy implementation and testing of source
1672 transformation algorithms via a language-independent abstract
1673 intermediate representation,
1674
1675 #. support for source code written in C and Fortan, and
1676
1677 #. generate efficient tangent linear and adjoint for the MIT general
1678 circulation model.
1679
1680 OpenAD’s homepage is at http://www-unix.mcs.anl.gov/OpenAD. A
1681 development WIKI is at
1682 http://wiki.mcs.anl.gov/OpenAD/index.php/Main_Page. From the WIKI’s
1683 main page, click on `Handling GCM <https://wiki.mcs.anl.gov/OpenAD/index.php/Handling_GCM>`_
1684 for various aspects pertaining to
1685 differentiating the MITgcm with OpenAD.
1686
1687 Downloading and installing OpenAD
1688 ---------------------------------
1689
1690 The OpenAD webpage has a detailed description on how to download and
1691 build OpenAD. From its homepage, please click on
1692 `Binaries <http://www.mcs.anl.gov/OpenAD/binaries.shtml>`_. You may either download pre-built binaries
1693 for quick trial, or follow the detailed build process described at
1694 http://www.mcs.anl.gov/OpenAD/access.shtml.
1695
1696 Building MITgcm adjoint with OpenAD
1697 -----------------------------------
1698
1699 **17-January-2008**
1700
1701 OpenAD was successfully built on head node of ``itrda.acesgrid.org``,
1702 for following system:
1703
1704 ::
1705
1706 > uname -a
1707 Linux itrda 2.6.22.2-42.fc6 #1 SMP Wed Aug 15 12:34:26 EDT 2007 i686 i686 i386 GNU/Linux
1708
b4daa24319 Shre*1709 > cat /proc/version
1710 Linux version 2.6.22.2-42.fc6 (brewbuilder@hs20-bc2-4.build.redhat.com)
5f55d7c73d Jeff*1711 (gcc version 4.1.2 20070626 (Red Hat 4.1.2-13)) #1 SMP Wed Aug 15 12:34:26 EDT 2007
1712
1713 > module load ifc/9.1.036 icc/9.1.042
1714
1715 Head of MITgcm branch (``checkpoint59m`` with some modifications) was used for
1716 building adjoint code. Following routing needed special care (revert
1717 to revision 1.1): http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/heimbach/OpenAD/OAD_support/active_module.f90?hideattic=0&view=markup.
1718
9d0c386f0c dngo*1719 Building the MITgcm adjoint using an OpenAD Singularity container
1720 -----------------------------------------------------------------
1721
1722 The MITgcm adjoint can also be built using a Singularity container. You will
1723 need `Singularity <https://singularity.hpcng.org/>`_, version 3.X. A container
1724 with OpenAD can be downloaded from the Sylabs Cloud: [#thanks-Dan]_
1725
1726 ::
1727
1728 singularity pull library://jahn/default/openad:latest
1729
1730 To use it, supply the path to the downloaded container to genmake2,
1731
1732 ::
1733
1734 ../../../tools/genmake2 -oad -oadsingularity /path/to/openad_latest.sif ...
1735 make adAll
1736
1737 If your build directory is on a remotely mounted file system (mounted at
1738 /mountpoint), you may have to add an option for mounting it in the container:
1739
1740 ::
1741
1742 ../../../tools/genmake2 -oad -oadsngl "-B /mountpoint /path/to/openad_latest.sif" ...
1743
1744 The ``-oadsingularity`` option is also supported by testreport,
1745 :numref:`testreport_utility`. Note that the path to the container has to be
1746 either absolute or relative to the build directory.
1747
b4daa24319 Shre*1748 .. _ad_tapenade:
1749
1750 Adjoint code generation using Tapenade
1751 ======================================
1752
1753 Authors: Shreyas Gaikwad, Sri Hari Krishna Naryanan, Laurent Hascoet, Patrick
1754 Heimbach
1755
1756 Introduction
1757 ------------
1758
1759 TAPENADE is an open-source Automatic Differentiation Engine developed at INRIA
1760 Sophia-Antipolis by the Tropics then Ecuador teams. TAPENADE can be utilized as
1761 a server (JAVA servlet), which runs at INRIA Sophia-Antipolis. The current
1762 address of this TAPENADE server is `here
1763 <http://www-tapenade.inria.fr:8080/tapenade/index.jsp>`_. TAPENADE can also be
1764 downloaded and installed locally as a set of JAVA classes (JAR archive). In
1765 that case it is run by a simple command line, which can be included into a
1766 Makefile. It also provides you with a user-interface to visualize the results
1767 in a HTML browser.
1768
1769 Downloading and installing Tapenade
1770 -----------------------------------
1771
1772 While the MITgcm source files are prepared to generate adjoint sensitivities,
1773 they will not be able to do so without an operable installation of
1774 Tapenade. Fortunately the Tapenade installation procedure is straight forward.
1775
1776 We detail the instructions here, but the latest instructions can always be
1777 found `here
1778 <https://tapenade.gitlabpages.inria.fr/tapenade/distrib/README.html>`__.
1779
1780 Prerequisites for Linux or Mac OS
1781 ---------------------------------
1782
1783 Before installing Tapenade, you must check that an up-to-date Java Runtime
1784 Environment is installed. Tapenade will not run with older Java Runtime
1785 Environment.
1786
1787 Steps for Mac OS
1788 ----------------
1789
1790 Tapenade 3.16 distribution does not contain a fortranParser executable for
1791 MacOS. It uses a docker image from `here
1792 <https://gitlab.inria.fr/tapenade/tapenade>`__. You need docker on your Mac to
1793 run the Tapenade distribution with Fortran programs. Details on how to build
1794 fortranParser is `here
1795 <https://tapenade.gitlabpages.inria.fr/tapenade/docs/html/src/frontf/README.html?highlight=mac>`__. You
1796 may also build Tapenade on your Mac from the `gitlab repository
1797 <https://tapenade.gitlabpages.inria.fr/tapenade/docs/html/distrib/README.html>`__.
1798
1799 To use the docker image specify ``TAPENADECMD=tapenadocker`` in your
1800 build-options or in a ``genmake_local`` file (:numref:`genmake2_desc`).
1801 Running a docker image also requires absolute paths, e.g., to
1802 :filelink:`tools/TAP_support/flow_tap <tools/TAP_support/flow_tap>`. At the
1803 :filelink:`genmake2 <tools/genmake2>` step use the option ``-rootdir`` to
1804 specify the absolute path to your MITgcm directory (see also
1805 :numref:`command_line_options`).
1806
1807 Steps for Linux
1808 ---------------
1809
1810 1. Read `the Tapenade license. <https://tapenade.gitlabpages.inria.fr/userdoc/build/html/LICENSE.html>`__
1811
1812 2. Download `tapenade_3.16.tar
1813 <https://tapenade.gitlabpages.inria.fr/tapenade/distrib/tapenade_3.16.tar>`__
1814 into your chosen installation directory *install_dir*.
1815
1816 3. Go to your chosen installation directory *install_dir*, and extract Tapenade
1817 from the tar file :
1818
1819 ::
1820
1821 % tar xvfz tapenade_3.16.tar
1822
1823 4. On Linux, depending on your distribution, Tapenade may require you to set
1824 the shell variable ``JAVA_HOME`` to your java installation directory. It is
1825 often ``JAVA_HOME=/usr/java/default``. You might also need to modify the
1826 ``PATH`` by adding the bin directory from the Tapenade installation. An
1827 example can be found :ref:`here <tapenade_bashrc_snippet>`.
1828
1829 Prerequisites for Windows
1830 -------------------------
1831
1832 Before installing Tapenade, you must check that an up-to-date Java Runtime
1833 Environment is installed. Tapenade will not run with older Java Runtime
1834 Environment. The Fortran parser of Tapenade uses `cygwin
1835 <https://www.cygwin.com/>`__.
1836
1837 Steps for Windows
1838 -----------------
1839
1840 1. Read `the Tapenade license. <https://tapenade.gitlabpages.inria.fr/userdoc/build/html/LICENSE.html>`__
1841
1842 2. Download `tapenade_3.16.zip
1843 <https://tapenade.gitlabpages.inria.fr/tapenade/distrib/tapenade_3.16.zip>`__
1844 into your chosen installation directory *install_dir*.
1845
1846 3. Go to your chosen installation directory *install_dir*, and extract Tapenade
1847 from the zip file.
1848
1849 4. Save a copy of the ``install_dir\tapenade_3.16\bin\tapenade.bat`` file and
1850 modify ``install_dir\tapenade_3.16\bin\tapenade.bat`` according to your
1851 installation parameters:
1852
1853 replace ``TAPENADE_HOME=..`` by ``TAPENADE_HOME="install_dir"\tapenade_3.16``
1854 replace ``JAVA_HOME="C:\Progra~1\Java\jdkXXXX"`` by your current java directory
1855 replace ``BROWSER="C:\Program Files\Internet Explorer\iexplore.exe"`` by your
1856 current browser.
1857
1858 .. _tapenade_bashrc_snippet:
1859
1860 **NOTE**: Every time you wish to use the AD capability with Tapenade, you must re-source the environment. We recommend that this be done automatically in your bash or c-shell profile upon login. An example of an addition to a ``.bashrc`` file from a Linux server is given below. Luckily, shell variable ``JAVA_HOME`` was not required to be explicitly set for this particular Linux distribution, but might be necessary for some other distributions.
1861
1862 ::
1863
1864 ##set some env variables for tapenade
1865
1866 export TAPENADE_HOME="/home/shreyas/tapenade_3.16"
1867 export PATH="$PATH:$TAPENADE_HOME/bin"
1868
1869 ##Modules
1870
1871 module use /share/modulefiles/
1872 module load java/jdk/16.0.1 # Java required by Tapenade
1873
1874
1875 You should now have a working copy of Tapenade.
1876
1877 For more information on the tapenade command and its arguments, type :
1878
1879 ::
1880
1881 tapenade -?
1882
1883 Prerequisites for Tapenade setup
1884 --------------------------------
1885
1886 The ``packages.conf`` file should include both the ``adjoint`` and ``tapenade``
1887 packages. Note that ``mnc`` and ``ecco`` packages are not yet compatible with
1888 Tapenade. The users are referred to the ``code_tap`` directories in the various
1889 verification experiments for reference.
1890
1891 **Pro tip**: ``diff -qr dir1 dir2`` can help you see all the differences in the files of two directories.
1892
1893 ``autodiff`` is not completely untangled from the Tapenade setup yet. In
1894 ``code_tap/AUTODIFF_OPTIONS.h``, the only flag that can be defined safely is
1895 ``ALLOW_AUTODIFF_MONITOR``.
1896
1897 Rest of the setup remains unchanged.
1898
1899
1900 Building MITgcm TLM with Tapenade
1901 ---------------------------------
1902
1903 The setup remains similar to how one sets up the TLM with TAF. A typical flow
1904 will look as follows -
1905
1906 ::
1907
1908 ### Assuming $PWD is the build subdirectory
1909 ### Clean stuff
1910 make CLEAN
1911
1912 ### Use your own optfile
1913 ../../../tools/genmake2 -tap -of ../../../tools/build_options/linux_amd64_ifort -mods ../code_tap
1914 make depend
1915
1916 ### Differentiate code to generate TLM code using Tapenade
1917 ### Creates executable mitgcmuv_tap_tlm
1918 make -j 8 tap_tlm
1919
1920 ### Rest of the setup is standard
1921 cd ../run
1922 rm -r *
1923 ln -s ../input_tap/* .
1924 ../input_tap/prepare_run
1925 ln -s ../build/mitgcmuv_tap_tlm .
1926 ./mitgcmuv_tap_tlm > output_tap_tlm.txt 2>&1
1927
1928 Building MITgcm adjoint with Tapenade
1929 -------------------------------------
1930
1931 The setup remains similar to how one sets up the adjoint with TAF. A typical
1932 flow will look as follows -
1933
1934 ::
1935
1936 ### Assuming $PWD is the build subdirectory
1937 ### Clean stuff
1938 make CLEAN
1939
1940 ### Use your own optfile
1941 ../../../tools/genmake2 -tap -of ../../../tools/build_options/linux_amd64_ifort -mods ../code_tap
1942 make depend
1943
1944 ### Differentiate code to generate adjoint code using Tapenade
1945 ### Creates executable mitgcmuv_tap_adj
1946 make -j 8 tap_adj
1947
1948 ### Rest of the setup is standard
1949 ### These commands are for a typical verification experiment
1950 cd ../run
1951 rm -r *
1952 ln -s ../input_tap/* .
1953 ../input_tap/prepare_run
1954 ln -s ../build/mitgcmuv_tap_adj .
1955 ./mitgcmuv_tap_adj > output_tap_adj.txt 2>&1
1956
9d0c386f0c dngo*1957 .. rubric:: Footnotes
1958
1959 .. [#thanks-Dan] A big thank you to Dan Goldberg for supplying the definition
1960 file for the Singularity container!