Warning, /doc/overview/overview.rst is written in an unsupported language. File is not indexed.
view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
f67abf1ee3 Jeff*0001 Overview
0002 ********
0003
0004 This document provides the reader with the information necessary to
0005 carry out numerical experiments using MITgcm. It gives a comprehensive
0006 description of the continuous equations on which the model is based, the
0007 numerical algorithms the model employs and a description of the associated
0008 program code. Along with the hydrodynamical kernel, physical and
0009 biogeochemical parameterizations of key atmospheric and oceanic processes
0010 are available. A number of examples illustrating the use of the model in
0011 both process and general circulation studies of the atmosphere and ocean are
0012 also presented.
0013
0014 Introduction
0015 ============
0016
0017 MITgcm has a number of novel aspects:
0018
0019 - it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive forward both atmospheric and oceanic models - see :numref:`onemodel`
0020
0021 .. figure:: figs/onemodel.*
0022 :width: 80%
0023 :align: center
0024 :alt: One model for atmospheric and oceanic simulations
0025 :name: onemodel
0026
0027 MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.
0028
0029
0030 - it has a non-hydrostatic capability and so can be used to study both small-scale and large scale processes - see :numref:`all-scales`
0031
0032 .. figure:: figs/scales.png
0033 :width: 90%
0034 :align: center
0035 :alt: MITgcm can simulate a wide range of scales
0036 :name: all-scales
0037
0038 MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon - from convection on the left, all the way through to global circulation patterns on the right.
0039
0040 - finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using orthogonal curvilinear grids and shaved cells - see :numref:`fvol`
0041
0042 .. figure:: figs/fvol.*
0043 :width: 80%
0044 :align: center
0045 :alt: Finit volume techniques
0046 :name: fvol
0047
0048 Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals :math:`\sigma` (terrain following) coordinates.
0049
0050 - tangent linear and adjoint counterparts are automatically maintained along with the forward model, permitting sensitivity and optimization studies.
0051
0052 - the model is developed to perform efficiently on a wide variety of computational platforms.
0053
0054
0055 Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al. (1997a),
0056 Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999), Hill et al. (1999),
0057 Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004) (an overview on the model formulation can also be found in Adcroft et al. (2004c)):
0058
0059 Hill, C. and J. Marshall, (1995)
0060 Application of a Parallel Navier-Stokes Model to Ocean Circulation in
0061 Parallel Computational Fluid Dynamics,
0062 In Proceedings of Parallel Computational Fluid Dynamics: Implementations
0063 and Results Using Parallel Computers, 545-552.
0064 Elsevier Science B.V.: New York :cite:`hill:95`
0065
0066 Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a)
0067 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
0068 J. Geophysical Res., **102(C3)**, 5733-5752 :cite:`marshall:97a`
0069
0070 Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b)
0071 A finite-volume, incompressible Navier Stokes model for studies of the ocean
0072 on parallel computers, J. Geophysical Res., **102(C3)**, 5753-5766 :cite:`marshall:97b`
0073
0074 Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
0075 Representation of topography by shaved cells in a height coordinate ocean
0076 model, Mon Wea Rev, **125**, 2293-2315 :cite:`adcroft:97`
0077
0078 Marshall, J., Jones, H. and C. Hill, (1998)
0079 Efficient ocean modeling using non-hydrostatic algorithms,
0080 Journal of Marine Systems, **18**, 115-134 :cite:`mars-eta:98`
0081
0082 Adcroft, A., Hill C. and J. Marshall: (1999)
0083 A new treatment of the Coriolis terms in C-grid models at both high and low
0084 resolutions,
0085 Mon. Wea. Rev., **127**, 1928-1936 :cite:`adcroft:99`
0086
0087 Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
0088 A Strategy for Terascale Climate Modeling,
0089 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
0090 in Meteorology, 406-425
0091 World Scientific Publishing Co: UK :cite:`hill:99`
0092
0093 Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
0094 Construction of the adjoint MIT ocean general circulation model and
0095 application to Atlantic heat transport variability,
0096 J. Geophysical Res., **104(C12)**, 29,529-29,547 :cite:`maro-eta:99`
0097
0098 A. Adcroft and J.-M. Campin, (2004a)
0099 Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models,
0100 Ocean Modelling, **7**, 269–284 :cite:`adcroft:04a`
0101
0102 A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b)
0103 Implementation of an atmosphere-ocean general circulation model on the expanded
0104 spherical cube,
0105 Mon Wea Rev , **132**, 2845–2863 :cite:`adcroft:04b`
0106
0107 J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004)
0108 Atmosphere-ocean modeling exploiting fluid isomorphisms, Mon. Wea. Rev., **132**, 2882–2894 :cite:`marshall:04`
0109
0110 A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c)
0111 Overview of the formulation and numerics of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, 139–149. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf :cite:`adcroft:04c`
0112
0113 We begin by briefly showing some of the results of the model in action to
0114 give a feel for the wide range of problems that can be addressed using it.
0115
0116
0117 Illustrations of the model in action
0118 ====================================
0119 MITgcm has been designed and used to model a wide range of phenomena,
0120 from convection on the scale of meters in the ocean to the global pattern of
0121 atmospheric winds - see :numref:`all-scales`. To give a flavor of the
0122 kinds of problems the model has been used to study, we briefly describe some
0123 of them here. A more detailed description of the underlying formulation,
0124 numerical algorithm and implementation that lie behind these calculations is
0125 given later. Indeed many of the illustrative examples shown below can be
0126 easily reproduced: simply download the model (the minimum you need is a PC
0127 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
0128 described in detail in the documentation.
0129
0130
0131 .. toctree::
0132 :maxdepth: 3
0133
0134 global_atmos_hs.rst
0135 ocean_gyres.rst
0136 global_ocean_circ.rst
0137 cvct_mixing_topo.rst
0138 bound_forc_inter_waves.rst
0139 parm_sens.rst
0140 global_state_est.rst
0141 ocean_biogeo_cyc.rst
0142 sim_lab_exp.rst
0143
0144
0145 Continuous equations in ‘r’ coordinates
0146 =======================================
0147 To render atmosphere and ocean models from one dynamical core we exploit
0148 ‘isomorphisms’ between equation sets that govern the evolution of the
0149 respective fluids - see :numref:`isomorphic-equations`. One system of
0150 hydrodynamical equations is written down and encoded. The model
0151 variables have different interpretations depending on whether the
0152 atmosphere or ocean is being studied. Thus, for example, the vertical
0153 coordinate ‘:math:`r`’ is interpreted as pressure, :math:`p`, if we are
0154 modeling the atmosphere (right hand side of :numref:`isomorphic-equations`) and height, :math:`z`, if we are modeling
0155 the ocean (left hand side of :numref:`isomorphic-equations`).
0156
0157
0158 .. figure:: figs/zandpcoord.png
0159 :width: 80%
0160 :align: center
0161 :alt: isomorphic-equations
0162 :name: isomorphic-equations
0163
0164 Isomorphic equation sets used for atmosphere (right) and ocean (left).
0165
0166
0167 The state of the fluid at any time is characterized by the distribution
0168 of velocity :math:`\vec{\mathbf{v}}`, active tracers :math:`\theta` and
0169 :math:`S`, a ‘geopotential’ :math:`\phi` and density
0170 :math:`\rho =\rho (\theta ,S,p)` which may depend on :math:`\theta`,
0171 :math:`S`, and :math:`p`. The equations that govern the evolution of
0172 these fields, obtained by applying the laws of classical mechanics and
0173 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in
0174 terms of a generic vertical coordinate, :math:`r`, so that the
0175 appropriate kinematic boundary conditions can be applied isomorphically
0176 see :numref:`zandp-vert-coord`.
0177
0178
0179 .. figure:: figs/vertcoord.*
0180 :width: 60%
0181 :align: center
0182 :alt: zandp-vert-coord
0183 :name: zandp-vert-coord
0184
0185 Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).
0186
0187 .. math::
0bad585a21 Navi*0188 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+\left( 2\vec{\boldsymbol{\Omega}}\times \vec{\mathbf{v}}
0189 \right) _{h}+ \nabla _{h}\phi = \vec{\boldsymbol{\mathcal{F}}}_h\text{ horizontal momentum}
f67abf1ee3 Jeff*0190 :label: horiz-mtm
0191
0192 .. math::
0bad585a21 Navi*0193 \frac{D\dot{r}}{Dt}+\hat{\boldsymbol{k}}\cdot \left( 2\vec{\boldsymbol{\Omega}}\times \vec{\mathbf{
f67abf1ee3 Jeff*0194 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ vertical momentum}
0195 :label: vert-mtm
0196
0197 .. math::
0bad585a21 Navi*0198 \nabla _{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
f67abf1ee3 Jeff*0199 \partial r}=0\text{ continuity}
0200 :label: continuity
0201
0202 .. math::
0203 b=b(\theta ,S,r)\text{ equation of state}
0204 :label: eos
0205
0206 .. math::
0207 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
0208 :label: pot-temp
0209
0210 .. math::
0211 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
0212 :label: humidity-salt
0213
0214 Here:
0215
0216 .. math:: r\text{ is the vertical coordinate}
0217
0218 .. math::
0219
0bad585a21 Navi*0220 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ is the total derivative}
f67abf1ee3 Jeff*0221
0222 .. math::
0223
0bad585a21 Navi*0224 \nabla = \nabla _{h}+\hat{\boldsymbol{k}}\frac{\partial }{\partial r}
f67abf1ee3 Jeff*0225 \text{ is the ‘grad’ operator}
0226
0bad585a21 Navi*0227 with :math:`\nabla _{h}` operating in the horizontal and
0228 :math:`\hat{\boldsymbol{k}}
f67abf1ee3 Jeff*0229 \frac{\partial }{\partial r}` operating in the vertical, where
0bad585a21 Navi*0230 :math:`\hat{\boldsymbol{k}}` is a unit vector in the vertical
f67abf1ee3 Jeff*0231
0232 .. math:: t\text{ is time}
0233
0234 .. math::
0235
0236 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the velocity}
0237
0238 .. math:: \phi \text{ is the ‘pressure’/‘geopotential’}
0239
0bad585a21 Navi*0240 .. math:: \vec{\boldsymbol{\Omega}}\text{ is the Earth's rotation}
f67abf1ee3 Jeff*0241
0242 .. math:: b\text{ is the ‘buoyancy’}
0243
0244 .. math:: \theta \text{ is potential temperature}
0245
0246 .. math:: S\text{ is specific humidity in the atmosphere; salinity in the ocean}
0247
0248 .. math::
0249
0bad585a21 Navi*0250 \vec{\boldsymbol{\mathcal{F}}}\text{ are forcing and dissipation of }\vec{
f67abf1ee3 Jeff*0251 \mathbf{v}}
0252
0253 .. math:: \mathcal{Q}_{\theta }\mathcal{\ }\text{ are forcing and dissipation of }\theta
0254
0255 .. math:: \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
0256
0bad585a21 Navi*0257 The terms :math:`\vec{\boldsymbol{\mathcal{F}}}` and :math:`\mathcal{Q}`
f67abf1ee3 Jeff*0258 are provided by ‘physics’ and forcing packages for atmosphere and ocean.
0259 These are described in later chapters.
0260
0261
0262 .. toctree::
0263 :maxdepth: 3
0264
0265 kinematic_bound.rst
0266 atmosphere.rst
0267 ocean.rst
0268 hydrostatic.rst
0269 soln_strategy.rst
0270 finding_pressure.rst
0271 forcing_dissip.rst
0272 vector_invar.rst
0273 adjoint.rst
0274
0275
0276 Appendix ATMOSPHERE
0277 ===================
0278
0279 .. toctree::
0280 :maxdepth: 3
0281
0282 hydro_prim_eqn.rst
0283
0284
0285 Appendix OCEAN
0286 ==============
0287
0288 .. toctree::
0289 :maxdepth: 3
0290
0291 eqn_motion_ocn.rst
0292
0293
0294 Appendix OPERATORS
0295 ==================
0296
0297 .. toctree::
0298 :maxdepth: 3
0299
0300 coordinate_sys.rst