Back to home page

MITgcm

 
 

    


Warning, /doc/overview/overview.rst is written in an unsupported language. File is not indexed.

view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
f67abf1ee3 Jeff*0001 Overview
                0002 ********
                0003 
                0004 This document provides the reader with the information necessary to
                0005 carry out numerical experiments using MITgcm. It gives a comprehensive
                0006 description of the continuous equations on which the model is based, the
                0007 numerical algorithms the model employs and a description of the associated
                0008 program code. Along with the hydrodynamical kernel, physical and
                0009 biogeochemical parameterizations of key atmospheric and oceanic processes
                0010 are available. A number of examples illustrating the use of the model in
                0011 both process and general circulation studies of the atmosphere and ocean are
                0012 also presented.
                0013 
                0014 Introduction
                0015 ============
                0016 
                0017 MITgcm has a number of novel aspects:
                0018 
                0019  - it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive forward both atmospheric and oceanic models - see :numref:`onemodel`
                0020 
                0021   .. figure:: figs/onemodel.*
                0022     :width: 80%
                0023     :align: center
                0024     :alt: One model for atmospheric and oceanic simulations
                0025     :name: onemodel
                0026 
                0027     MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.
                0028 
                0029 
                0030  - it has a non-hydrostatic capability and so can be used to study both small-scale and large scale processes - see :numref:`all-scales`
                0031 
                0032   .. figure:: figs/scales.png
                0033     :width: 90%
                0034     :align: center
                0035     :alt: MITgcm can simulate a wide range of scales
                0036     :name: all-scales
                0037 
                0038     MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon - from convection on the left, all the way through to global circulation patterns on the right.
                0039 
                0040  - finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using orthogonal curvilinear grids and shaved cells - see :numref:`fvol`
                0041 
                0042   .. figure:: figs/fvol.*
                0043     :width: 80%
                0044     :align: center
                0045     :alt: Finit volume techniques
                0046     :name: fvol
                0047 
                0048     Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals :math:`\sigma` (terrain following) coordinates.
                0049 
                0050  - tangent linear and adjoint counterparts are automatically maintained along with the forward model, permitting sensitivity and optimization studies.
                0051 
                0052  - the model is developed to perform efficiently on a wide variety of computational platforms.
                0053 
                0054 
                0055 Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al. (1997a), 
                0056 Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999), Hill et al. (1999),
                0057 Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004) (an overview on the model formulation can also be found in Adcroft et al. (2004c)):
                0058 
                0059 Hill, C. and J. Marshall, (1995)
                0060 Application of a Parallel Navier-Stokes Model to Ocean Circulation in 
                0061 Parallel Computational Fluid Dynamics,
                0062 In Proceedings of Parallel Computational Fluid Dynamics: Implementations 
                0063 and Results Using Parallel Computers, 545-552.
                0064 Elsevier Science B.V.: New York :cite:`hill:95`
                0065 
                0066 Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a)
                0067 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
                0068 J. Geophysical Res., **102(C3)**, 5733-5752 :cite:`marshall:97a`
                0069 
                0070 Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b)
                0071 A finite-volume, incompressible Navier Stokes model for studies of the ocean
                0072 on parallel computers, J. Geophysical Res., **102(C3)**, 5753-5766 :cite:`marshall:97b`
                0073 
                0074 Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
                0075 Representation of topography by shaved cells in a height coordinate ocean
                0076 model, Mon Wea Rev, **125**, 2293-2315 :cite:`adcroft:97`
                0077 
                0078 Marshall, J., Jones, H. and C. Hill, (1998)
                0079 Efficient ocean modeling using non-hydrostatic algorithms,
                0080 Journal of Marine Systems, **18**, 115-134 :cite:`mars-eta:98`
                0081 
                0082 Adcroft, A., Hill C. and J. Marshall: (1999)
                0083 A new treatment of the Coriolis terms in C-grid models at both high and low
                0084 resolutions,
                0085 Mon. Wea. Rev., **127**, 1928-1936 :cite:`adcroft:99`
                0086 
                0087 Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
                0088 A Strategy for Terascale Climate Modeling,
                0089 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
                0090 in Meteorology, 406-425
                0091 World Scientific Publishing Co: UK :cite:`hill:99`
                0092 
                0093 Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
                0094 Construction of the adjoint MIT ocean general circulation model and 
                0095 application to Atlantic heat transport variability,
                0096 J. Geophysical Res., **104(C12)**, 29,529-29,547 :cite:`maro-eta:99`
                0097 
                0098 A. Adcroft and J.-M. Campin, (2004a)
                0099 Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models, 
                0100 Ocean Modelling, **7**, 269–284 :cite:`adcroft:04a`
                0101 
                0102 A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b)
                0103 Implementation of an atmosphere-ocean general circulation model on the expanded 
                0104 spherical cube, 
                0105 Mon Wea Rev , **132**, 2845–2863 :cite:`adcroft:04b`
                0106 
                0107 J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004)
                0108 Atmosphere-ocean modeling exploiting fluid isomorphisms, Mon. Wea. Rev., **132**, 2882–2894 :cite:`marshall:04`
                0109 
                0110 A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c)
                0111 Overview of the formulation and numerics of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, 139–149. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf :cite:`adcroft:04c`
                0112 
                0113 We begin by briefly showing some of the results of the model in action to
                0114 give a feel for the wide range of problems that can be addressed using it.
                0115 
                0116 
                0117 Illustrations of the model in action
                0118 ====================================
                0119 MITgcm has been designed and used to model a wide range of phenomena,
                0120 from convection on the scale of meters in the ocean to the global pattern of
                0121 atmospheric winds - see :numref:`all-scales`. To give a flavor of the
                0122 kinds of problems the model has been used to study, we briefly describe some
                0123 of them here. A more detailed description of the underlying formulation,
                0124 numerical algorithm and implementation that lie behind these calculations is
                0125 given later. Indeed many of the illustrative examples shown below can be
                0126 easily reproduced: simply download the model (the minimum you need is a PC
                0127 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
                0128 described in detail in the documentation.
                0129 
                0130 
                0131 .. toctree::
                0132    :maxdepth: 3
                0133 
                0134    global_atmos_hs.rst
                0135    ocean_gyres.rst
                0136    global_ocean_circ.rst
                0137    cvct_mixing_topo.rst
                0138    bound_forc_inter_waves.rst
                0139    parm_sens.rst
                0140    global_state_est.rst
                0141    ocean_biogeo_cyc.rst
                0142    sim_lab_exp.rst
                0143 
                0144  
                0145 Continuous equations in ‘r’ coordinates
                0146 =======================================
                0147 To render atmosphere and ocean models from one dynamical core we exploit
                0148 ‘isomorphisms’ between equation sets that govern the evolution of the
                0149 respective fluids - see :numref:`isomorphic-equations`. One system of
                0150 hydrodynamical equations is written down and encoded. The model
                0151 variables have different interpretations depending on whether the
                0152 atmosphere or ocean is being studied. Thus, for example, the vertical
                0153 coordinate ‘:math:`r`’ is interpreted as pressure, :math:`p`, if we are
                0154 modeling the atmosphere (right hand side of :numref:`isomorphic-equations`) and height, :math:`z`, if we are modeling
                0155 the ocean (left hand side of :numref:`isomorphic-equations`).
                0156 
                0157 
                0158   .. figure:: figs/zandpcoord.png
                0159     :width: 80%
                0160     :align: center
                0161     :alt: isomorphic-equations
                0162     :name: isomorphic-equations
                0163 
                0164     Isomorphic equation sets used for atmosphere (right) and ocean (left).
                0165 
                0166 
                0167 The state of the fluid at any time is characterized by the distribution
                0168 of velocity :math:`\vec{\mathbf{v}}`, active tracers :math:`\theta` and
                0169 :math:`S`, a ‘geopotential’ :math:`\phi` and density
                0170 :math:`\rho =\rho (\theta ,S,p)` which may depend on :math:`\theta`,
                0171 :math:`S`, and :math:`p`. The equations that govern the evolution of
                0172 these fields, obtained by applying the laws of classical mechanics and
                0173 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in
                0174 terms of a generic vertical coordinate, :math:`r`, so that the
                0175 appropriate kinematic boundary conditions can be applied isomorphically
                0176 see :numref:`zandp-vert-coord`.
                0177 
                0178 
                0179   .. figure:: figs/vertcoord.*
                0180     :width: 60%
                0181     :align: center
                0182     :alt: zandp-vert-coord
                0183     :name: zandp-vert-coord
                0184 
                0185     Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).
                0186 
                0187 .. math::
0bad585a21 Navi*0188    \frac{D\vec{\mathbf{v}}_{h}}{Dt}+\left( 2\vec{\boldsymbol{\Omega}}\times \vec{\mathbf{v}}
                0189    \right) _{h}+ \nabla _{h}\phi = \vec{\boldsymbol{\mathcal{F}}}_h\text{  horizontal momentum}
f67abf1ee3 Jeff*0190    :label: horiz-mtm
                0191 
                0192 .. math::
0bad585a21 Navi*0193    \frac{D\dot{r}}{Dt}+\hat{\boldsymbol{k}}\cdot \left( 2\vec{\boldsymbol{\Omega}}\times \vec{\mathbf{
f67abf1ee3 Jeff*0194    v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  vertical momentum}
                0195    :label: vert-mtm
                0196 
                0197 .. math::
0bad585a21 Navi*0198     \nabla _{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
f67abf1ee3 Jeff*0199    \partial r}=0\text{  continuity}
                0200    :label: continuity
                0201 
                0202 .. math:: 
                0203    b=b(\theta ,S,r)\text{  equation of state} 
                0204    :label: eos
                0205  
                0206 .. math::
                0207    \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{  potential temperature}
                0208    :label: pot-temp
                0209 
                0210 .. math::
                0211    \frac{DS}{Dt}=\mathcal{Q}_{S}\text{  humidity/salinity}
                0212    :label: humidity-salt
                0213 
                0214 Here:
                0215 
                0216 .. math:: r\text{ is the vertical coordinate}
                0217 
                0218 .. math::
                0219 
0bad585a21 Navi*0220    \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot  \nabla  \text{ is the total derivative}
f67abf1ee3 Jeff*0221 
                0222 .. math::
                0223 
0bad585a21 Navi*0224     \nabla = \nabla _{h}+\hat{\boldsymbol{k}}\frac{\partial }{\partial r}
f67abf1ee3 Jeff*0225    \text{  is the ‘grad’ operator}
                0226 
0bad585a21 Navi*0227 with :math:`\nabla _{h}` operating in the horizontal and
                0228 :math:`\hat{\boldsymbol{k}}
f67abf1ee3 Jeff*0229 \frac{\partial }{\partial r}` operating in the vertical, where
0bad585a21 Navi*0230 :math:`\hat{\boldsymbol{k}}` is a unit vector in the vertical
f67abf1ee3 Jeff*0231 
                0232 .. math:: t\text{ is time}
                0233 
                0234 .. math::
                0235 
                0236    \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the velocity}
                0237 
                0238 .. math:: \phi \text{ is the ‘pressure’/‘geopotential’}
                0239 
0bad585a21 Navi*0240 .. math:: \vec{\boldsymbol{\Omega}}\text{ is the Earth's rotation}
f67abf1ee3 Jeff*0241 
                0242 .. math:: b\text{ is the ‘buoyancy’}
                0243 
                0244 .. math:: \theta \text{ is potential temperature}
                0245 
                0246 .. math:: S\text{ is specific humidity in the atmosphere; salinity in the ocean}
                0247 
                0248 .. math::
                0249 
0bad585a21 Navi*0250    \vec{\boldsymbol{\mathcal{F}}}\text{ are forcing and dissipation of }\vec{
f67abf1ee3 Jeff*0251    \mathbf{v}}
                0252 
                0253 .. math:: \mathcal{Q}_{\theta }\mathcal{\ }\text{ are forcing and dissipation of }\theta
                0254 
                0255 .. math:: \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
                0256 
0bad585a21 Navi*0257 The terms :math:`\vec{\boldsymbol{\mathcal{F}}}` and :math:`\mathcal{Q}` 
f67abf1ee3 Jeff*0258 are provided by ‘physics’ and forcing packages for atmosphere and ocean.
                0259 These are described in later chapters.
                0260 
                0261 
                0262 .. toctree::
                0263    :maxdepth: 3
                0264 
                0265    kinematic_bound.rst
                0266    atmosphere.rst
                0267    ocean.rst
                0268    hydrostatic.rst
                0269    soln_strategy.rst
                0270    finding_pressure.rst
                0271    forcing_dissip.rst
                0272    vector_invar.rst
                0273    adjoint.rst
                0274 
                0275 
                0276 Appendix ATMOSPHERE
                0277 ===================
                0278 
                0279 .. toctree::
                0280    :maxdepth: 3
                0281 
                0282    hydro_prim_eqn.rst
                0283 
                0284 
                0285 Appendix OCEAN
                0286 ==============
                0287 
                0288 .. toctree::
                0289    :maxdepth: 3
                0290 
                0291    eqn_motion_ocn.rst
                0292 
                0293 
                0294 Appendix OPERATORS
                0295 ==================
                0296 
                0297 .. toctree::
                0298    :maxdepth: 3
                0299 
                0300    coordinate_sys.rst