Back to home page

MITgcm

 
 

    


Warning, /doc/overview/hydrostatic.rst is written in an unsupported language. File is not indexed.

view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
bf89a37abc Phob*0001 .. _hydrostatic_quasihydrostatic_forms:
                0002 
f67abf1ee3 Jeff*0003 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms
                0004 ------------------------------------------------------------------------------
                0005 
                0006 Let us separate :math:`\phi` in to surface, hydrostatic and
                0007 non-hydrostatic terms:
                0008 
                0009 .. math::
0bad585a21 Navi*0010    \phi (x,y,r)=\phi _{s}(x,y)+\phi _{\rm hyd}(x,y,r)+\phi _{\rm nh}(x,y,r)
f67abf1ee3 Jeff*0011    :label: phi-split
                0012 
                0013 and write :eq:`horiz-mtm` in the form:
                0014 
                0015 .. math::
0bad585a21 Navi*0016    \frac{\partial \vec{\mathbf{v}}_{h}}{\partial t}+ \nabla _{h}\phi
                0017    _{s}+ \nabla _{h}\phi _{\rm hyd}+\epsilon _{\rm nh} \nabla _{h}\phi
                0018    _{\rm nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  
f67abf1ee3 Jeff*0019    :label: mom-h
                0020 
                0021 .. math:: 
0bad585a21 Navi*0022    \frac{\partial \phi _{\rm hyd}}{\partial r}=-b
f67abf1ee3 Jeff*0023    :label: hydrostatic
                0024 
                0025 .. math::
0bad585a21 Navi*0026    \epsilon _{\rm nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{\rm nh}}{
f67abf1ee3 Jeff*0027    \partial r}=G_{\dot{r}}
                0028    :label: mom-w
                0029 
0bad585a21 Navi*0030 Here :math:`\epsilon _{\rm nh}` is a non-hydrostatic parameter.
f67abf1ee3 Jeff*0031 
                0032 The :math:`\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right)` in
                0033 :eq:`mom-h` and :eq:`mom-w` represent advective, metric and Coriolis
                0034 terms in the momentum equations. In spherical coordinates they take the
                0035 form  [#]_ - see Marshall et al. (1997a) :cite:`marshall:97a` for a full discussion:
                0036 
                0037 .. math::
                0038    :label: gu-spherical
                0039 
0bad585a21 Navi*0040    G_{u} = & -\vec{\mathbf{v}} \cdot  \nabla  u && \qquad \text{advection} 
f67abf1ee3 Jeff*0041 
                0042    & -\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} && \qquad \text{metric}    
                0043 
                0044    & -\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} && \qquad \text{Coriolis}  
                0045 
                0046    & +\mathcal{F}_{u} && \qquad \text{forcing/dissipation}
                0047 
                0048 .. math::
                0049    :label: gv-spherical
                0050 
0bad585a21 Navi*0051    G_{v} = & -\vec{\mathbf{v}} \cdot  \nabla  v && \qquad \text{advection}
f67abf1ee3 Jeff*0052  
                0053    & -\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} && \qquad \text{metric}    
                0054 
2645b5126e Henr*0055    & -\left\{ 2\Omega u\sin \varphi\right\} && \qquad \text{Coriolis}  
f67abf1ee3 Jeff*0056 
                0057    & +\mathcal{F}_{v} && \qquad \text{forcing/dissipation}
                0058 
                0059 .. math::
                0060    :label: gw-spherical
                0061 
0bad585a21 Navi*0062    G_{\dot{r}} = & -\underline{\underline{\vec{\mathbf{v}} \cdot  \nabla  \dot{r}}} && \qquad \text{advection}
f67abf1ee3 Jeff*0063  
                0064    & -\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} && \qquad \text{metric}    
                0065 
                0066    & +\underline{2\Omega u\cos \varphi} && \qquad \text{Coriolis}  
                0067 
                0068    & +\underline{\underline{\mathcal{F}_{\dot{r}}}} && \qquad \text{forcing/dissipation}
                0069 
                0070 
                0071 In the above ‘:math:`{r}`’ is the distance from the center of the earth
                0072 and ‘:math:`\varphi` ’ is latitude (see :numref:`sphere_coor`).
                0073 
                0074 Grad and div operators in spherical coordinates are defined in :ref:`operators`.
                0075 
                0076 
                0077 Shallow atmosphere approximation
                0078 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                0079 
                0080 Most models are based on the ‘hydrostatic primitive equations’ (**HPE**’s)
                0081 in which the vertical momentum equation is reduced to a statement of
                0082 hydrostatic balance and the ‘traditional approximation’ is made in which
                0083 the Coriolis force is treated approximately and the shallow atmosphere
                0084 approximation is made. MITgcm need not make the ‘traditional
                0085 approximation’. To be able to support consistent non-hydrostatic forms
                0086 the shallow atmosphere approximation can be relaxed - when dividing
                0087 through by :math:`r` in, for example, :eq:`gu-spherical`, we do not
                0088 replace :math:`r` by :math:`a`, the radius of the earth.
                0089 
94151a9b18 Jeff*0090 .. _hydro_and_quasihydro:
f67abf1ee3 Jeff*0091 
                0092 Hydrostatic and quasi-hydrostatic forms
                0093 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                0094 
                0095 These are discussed at length in Marshall et al. (1997a) :cite:`marshall:97a`.
                0096 
                0097 In the ‘hydrostatic primitive equations’ (**HPE**) all the underlined
                0098 terms in Eqs. :eq:`gu-spherical`
                0099 :math:`\rightarrow` :eq:`gw-spherical` are neglected and ‘:math:`{r}`’
                0100 is replaced by ‘:math:`a`’, the mean radius of the earth. Once the
0bad585a21 Navi*0101 pressure is found at one level - e.g. by inverting a 2-D Elliptic
                0102 equation for :math:`\phi _{s}` at :math:`r=R_{\rm moving}` - the pressure
f67abf1ee3 Jeff*0103 can be computed at all other levels by integration of the hydrostatic
                0104 relation, eq :eq:`hydrostatic`.
                0105 
                0106 In the ‘quasi-hydrostatic’ equations (**QH**) strict balance between
                0107 gravity and vertical pressure gradients is not imposed. The
                0108 :math:`2\Omega u\cos\varphi` Coriolis term are not neglected and are balanced by a
                0109 non-hydrostatic contribution to the pressure field: only the terms
                0110 underlined twice in Eqs. :eq:`gu-spherical` :math:`\rightarrow` :eq:`gw-spherical` are set to
                0111 zero and, simultaneously, the shallow atmosphere approximation is
                0112 relaxed. In **QH** *all* the metric terms are retained and the full
                0113 variation of the radial position of a particle monitored. The **QH** 
                0114 vertical momentum equation :eq:`mom-w` becomes:
                0115 
0bad585a21 Navi*0116 .. math:: \frac{\partial \phi _{\rm nh}}{\partial r}=2\Omega u\cos \varphi
f67abf1ee3 Jeff*0117 
                0118 making a small correction to the hydrostatic pressure.
                0119 
                0120 **QH** has good energetic credentials - they are the same as for
                0121 **HPE**. Importantly, however, it has the same angular momentum
                0122 principle as the full non-hydrostatic model (**NH**) - see Marshall
0bad585a21 Navi*0123 et.al. (1997a) :cite:`marshall:97a`. As in **HPE** only a 2-D elliptic problem need be solved.
f67abf1ee3 Jeff*0124 
                0125 Non-hydrostatic and quasi-nonhydrostatic forms
                0126 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                0127 
                0128 MITgcm presently supports a full non-hydrostatic ocean isomorph, but
                0129 only a quasi-non-hydrostatic atmospheric isomorph.
                0130 
                0131 Non-hydrostatic Ocean
                0132 ^^^^^^^^^^^^^^^^^^^^^
                0133 
                0134 In the non-hydrostatic ocean model all terms in equations
                0135 Eqs. :eq:`gu-spherical` :math:`\rightarrow` :eq:`gw-spherical` are
                0136 retained. A three dimensional elliptic equation must be solved subject
                0137 to Neumann boundary conditions (see below). It is important to note that
                0138 use of the full **NH** does not admit any new ‘fast’ waves in to the
                0139 system - the incompressible condition :eq:`continuity` has already
                0140 filtered out acoustic modes. It does, however, ensure that the gravity
                0141 waves are treated accurately with an exact dispersion relation. The
                0142 **NH** set has a complete angular momentum principle and consistent
                0143 energetics - see White and Bromley (1995) :cite:`white:95`; Marshall et al. (1997a) :cite:`marshall:97a`.
                0144 
                0145 Quasi-nonhydrostatic Atmosphere
                0146 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                0147 
                0148 In the non-hydrostatic version of our atmospheric model we approximate
                0149 :math:`\dot{r}` in the vertical momentum eqs. :eq:`mom-w` and :eq:`gv-spherical` (but only here) by:
                0150 
                0151 .. math:: \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}
                0152    :label: quasi-nh-w
                0153 
0bad585a21 Navi*0154 where :math:`p_{\rm hy}` is the hydrostatic pressure.
f67abf1ee3 Jeff*0155 
                0156 Summary of equation sets supported by model
                0157 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                0158 
                0159 Atmosphere
                0160 ^^^^^^^^^^
                0161 
                0162 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of
                0163 the compressible non-Boussinesq equations in :math:`p-`\ coordinates are
                0164 supported.
                0165 
                0166 Hydrostatic and quasi-hydrostatic
                0167 '''''''''''''''''''''''''''''''''
                0168 
                0169 
                0170 
                0171 The hydrostatic set is written out in :math:`p-`\ coordinates in
                0172 :ref:`atmos_appendix` - see eqs. :eq:`atmos-prime` to :eq:`atmos-prime5`.
                0173 
                0174 Quasi-nonhydrostatic
                0175 ''''''''''''''''''''
                0176 
                0177 A quasi-nonhydrostatic form is also supported.
                0178 
                0179 Ocean
                0180 ^^^^^
                0181 
                0182 Hydrostatic and quasi-hydrostatic
                0183 '''''''''''''''''''''''''''''''''
                0184 
                0185 Hydrostatic, and quasi-hydrostatic forms of the incompressible
                0186 Boussinesq equations in :math:`z-`\ coordinates are supported.
                0187 
                0188 Non-hydrostatic
                0189 '''''''''''''''
                0190 
                0191 Non-hydrostatic forms of the incompressible Boussinesq equations in
                0192 :math:`z-` coordinates are supported - see eqs. :eq:`eq-ocean-mom` to :eq:`eq-ocean-salt`.
                0193 
                0194 
                0195 
                0196 .. [#] In the hydrostatic primitive equations (**HPE**) all underlined terms in :eq:`gu-spherical`, :eq:`gv-spherical` and :eq:`gw-spherical` are omitted; the singly-underlined terms are included in the quasi-hydrostatic model (**QH**). The fully non-hydrostatic model (**NH**) includes all terms.
                0197