Warning, /doc/overview/hydro_prim_eqn.rst is written in an unsupported language. File is not indexed.
view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
f67abf1ee3 Jeff*0001 .. _atmos_appendix:
0002
0003 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates
0004 --------------------------------------------------------------------------
0005
0006 The hydrostatic primitive equations (**HPE**’s) in :math:`p-`\coordinates are:
0007
0008 .. math::
0bad585a21 Navi*0009 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\boldsymbol{k}}\times \vec{\mathbf{v}}_{h}+ \nabla _{p}\phi = \vec{\boldsymbol{\mathcal{F}}}
f67abf1ee3 Jeff*0010 :label: atmos-mom
0011
0012 .. math::
0013 \frac{\partial \phi }{\partial p}+\alpha = 0
0014 :label: eq-p-hydro-start
0015
0016 .. math::
0bad585a21 Navi*0017 \nabla _{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{\partial p} = 0
f67abf1ee3 Jeff*0018 :label: atmos-cont
0019
0020 .. math::
0021 p\alpha = RT
0022 :label: atmos-eos
0023
0024 .. math::
0025 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} = \mathcal{Q}
0026 :label: atmos-heat
0027
0028 where :math:`\vec{\mathbf{v}}_{h}=(u,v,0)` is the ‘horizontal’ (on pressure surfaces) component of velocity,
0bad585a21 Navi*0029 :math:`\frac{D}{Dt}=\frac{\partial}{\partial t}+\vec{\mathbf{v}}_{h}\cdot \nabla _{p}+\omega \frac{\partial }{\partial p}`
f67abf1ee3 Jeff*0030 is the total derivative, :math:`f=2\Omega \sin \varphi` is the Coriolis
0031 parameter, :math:`\phi =gz` is the geopotential, :math:`\alpha =1/\rho`
0032 is the specific volume, :math:`\omega =\frac{Dp }{Dt}` is the vertical
0033 velocity in the :math:`p-`\ coordinate. Equation :eq:`atmos-heat` is the
0034 first law of thermodynamics where internal energy :math:`e=c_{v}T`,
0035 :math:`T` is temperature, :math:`Q` is the rate of heating per unit mass
0036 and :math:`p\frac{D\alpha }{Dt}` is the work done by the fluid in
0037 compressing.
0038
0039 It is convenient to cast the heat equation in terms of potential
0040 temperature :math:`\theta` so that it looks more like a generic
0041 conservation law. Differentiating :eq:`atmos-eos` we get:
0042
0043 .. math:: p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
0044
0045 which, when added to the heat equation :eq:`atmos-heat` and using
0046 :math:`c_{p}=c_{v}+R`, gives:
0047
0048 .. math::
0049 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
0050 :label: eq-p-heat-interim
0051
0052 Potential temperature is defined:
0053
0054 .. math:: \theta =T(\frac{p_{c}}{p})^{\kappa }
0055 :label: potential-temp
0056
0057 where :math:`p_{c}` is a reference pressure and
0058 :math:`\kappa =R/c_{p}`. For convenience we will make use of the Exner
0059 function :math:`\Pi (p)` which is defined by:
0060
0061 .. math:: \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }
0062 :label: Exner
0063
0064 The following relations will be useful and are easily expressed in
0065 terms of the Exner function:
0066
0067 .. math::
0068 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
0069 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
0070 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
0071 \frac{Dp}{Dt}
0072
0073 where :math:`b=\frac{\partial \ \Pi }{\partial p}\theta` is the buoyancy.
0074
0075 The heat equation is obtained by noting that
0076
0077 .. math::
0078 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
0079 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
0080
0081 and on substituting into :eq:`eq-p-heat-interim` gives:
0082
0083 .. math::
0084 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
0085 :label: potential-temperature-equation
0086
0087 which is in conservative form.
0088
0089 For convenience in the model we prefer to step forward
0090 :eq:`potential-temperature-equation` rather than :eq:`atmos-heat`.
0091
0092 Boundary conditions
0093 ~~~~~~~~~~~~~~~~~~~
0094
0095 The upper and lower boundary conditions are:
0096
0097 .. math::
0098 \begin{aligned}\mbox{at the top:}\;\;p=0 &\text{, }\omega =\frac{Dp}{Dt}=0\end{aligned}
0099 :label: boundary-condition-atmosphere-top
0100
0101 .. math::
0bad585a21 Navi*0102 \begin{aligned}\mbox{at the surface:}\;\;p=p_{s} &\text{, }\phi =\phi _{\rm topo}=g~Z_{\rm topo}\end{aligned}
f67abf1ee3 Jeff*0103 :label: boundary-condition-atmosphere-bot
0104
0105 In :math:`p-`\coordinates, the upper boundary acts like a solid boundary
0106 (:math:`\omega=0` ); in :math:`z-`\coordinates the lower boundary is analogous to a
0107 free surface (:math:`\phi` is imposed and :math:`\omega \neq 0`).
0108
0109 .. _hpe-p-geo-potential-split:
0110
0111 Splitting the geopotential
0112 ~~~~~~~~~~~~~~~~~~~~~~~~~~
0113
0114 For the purposes of initialization and reducing round-off errors, the
0115 model deals with perturbations from reference (or ‘standard’) profiles.
0116 For example, the hydrostatic geopotential associated with the resting
0117 atmosphere is not dynamically relevant and can therefore be subtracted
0118 from the equations. The equations written in terms of perturbations are
0119 obtained by substituting the following definitions into the previous
0120 model equations:
0121
0122 .. math::
0123 \theta = \theta _{o}+\theta ^{\prime }
0124 :label: atmos-ref-prof-theta
0125
0126 .. math::
0127 \alpha = \alpha _{o}+\alpha ^{\prime }
0128 :label: atmos-ref-prof-alpha
0129
0130 .. math::
0131 \phi = \phi _{o}+\phi ^{\prime }
0132 :label: atmos-ref-prof-phi
0133
0134 The reference state (indicated by subscript ‘*o*’) corresponds to
0135 horizontally homogeneous atmosphere at rest
0136 (:math:`\theta _{o},\alpha _{o},\phi_{o}`) with surface pressure :math:`p_{o}(x,y)` that satisfies
0bad585a21 Navi*0137 :math:`\phi_{o}(p_{o})=g~Z_{\rm topo}`, defined:
f67abf1ee3 Jeff*0138
0139 .. math:: \theta _{o}(p) = f^{n}(p) \\
0140 .. math:: \alpha _{o}(p) = \Pi _{p}\theta _{o} \\
0bad585a21 Navi*0141 .. math:: \phi _{o}(p) = \phi _{\rm topo}-\int_{p_{0}}^{p}\alpha _{o}dp
f67abf1ee3 Jeff*0142
0143 The final form of the **HPE**’s in :math:`p-`\coordinates is then:
0144
0145 .. math::
0bad585a21 Navi*0146 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\boldsymbol{k}}\times \vec{\mathbf{v}}
0147 _{h}+ \nabla _{p}\phi ^{\prime } = \vec{\boldsymbol{\mathcal{F}}}
f67abf1ee3 Jeff*0148 :label: atmos-prime
0149
0150 .. math::
0151 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } = 0
0152 :label: atmos-prime2
0153
0154 .. math::
0bad585a21 Navi*0155 \nabla _{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
f67abf1ee3 Jeff*0156 \partial p} = 0
0157 :label: atmos-prime3
0158
0159 .. math::
0160 \frac{\partial \Pi }{\partial p}\theta ^{\prime } = \alpha ^{\prime }
0161 :label: atmos-prime4
0162
0163 .. math::
0164 \frac{D\theta }{Dt} = \frac{\mathcal{Q}}{\Pi }
0165 :label: atmos-prime5
0166