Back to home page

MITgcm

 
 

    


Warning, /doc/overview/hydro_prim_eqn.rst is written in an unsupported language. File is not indexed.

view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
f67abf1ee3 Jeff*0001 .. _atmos_appendix:
                0002 
                0003 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates
                0004 --------------------------------------------------------------------------
                0005 
                0006 The hydrostatic primitive equations (**HPE**’s) in :math:`p-`\coordinates are:
                0007 
                0008 .. math::
0bad585a21 Navi*0009    \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\boldsymbol{k}}\times \vec{\mathbf{v}}_{h}+ \nabla _{p}\phi = \vec{\boldsymbol{\mathcal{F}}}
f67abf1ee3 Jeff*0010    :label: atmos-mom
                0011  
                0012 .. math::
                0013    \frac{\partial \phi }{\partial p}+\alpha = 0
                0014    :label: eq-p-hydro-start
                0015 
                0016 .. math::
0bad585a21 Navi*0017     \nabla _{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{\partial p} = 0
f67abf1ee3 Jeff*0018    :label: atmos-cont
                0019 
                0020 .. math::
                0021    p\alpha = RT  
                0022    :label: atmos-eos
                0023 
                0024 .. math::
                0025    c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} = \mathcal{Q}
                0026    :label: atmos-heat
                0027 
                0028 where :math:`\vec{\mathbf{v}}_{h}=(u,v,0)` is the ‘horizontal’ (on pressure surfaces) component of velocity,
0bad585a21 Navi*0029 :math:`\frac{D}{Dt}=\frac{\partial}{\partial t}+\vec{\mathbf{v}}_{h}\cdot  \nabla _{p}+\omega \frac{\partial }{\partial p}`
f67abf1ee3 Jeff*0030 is the total derivative, :math:`f=2\Omega \sin \varphi` is the Coriolis
                0031 parameter, :math:`\phi =gz` is the geopotential, :math:`\alpha =1/\rho`
                0032 is the specific volume, :math:`\omega =\frac{Dp }{Dt}` is the vertical
                0033 velocity in the :math:`p-`\ coordinate. Equation :eq:`atmos-heat` is the
                0034 first law of thermodynamics where internal energy :math:`e=c_{v}T`,
                0035 :math:`T` is temperature, :math:`Q` is the rate of heating per unit mass
                0036 and :math:`p\frac{D\alpha }{Dt}` is the work done by the fluid in
                0037 compressing.
                0038 
                0039 It is convenient to cast the heat equation in terms of potential
                0040 temperature :math:`\theta` so that it looks more like a generic
                0041 conservation law. Differentiating :eq:`atmos-eos` we get:
                0042 
                0043 .. math:: p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
                0044 
                0045 which, when added to the heat equation :eq:`atmos-heat` and using
                0046 :math:`c_{p}=c_{v}+R`, gives:
                0047 
                0048 .. math::
                0049    c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
                0050    :label: eq-p-heat-interim
                0051 
                0052 Potential temperature is defined:
                0053 
                0054 .. math:: \theta =T(\frac{p_{c}}{p})^{\kappa }
                0055    :label: potential-temp
                0056 
                0057 where :math:`p_{c}` is a reference pressure and
                0058 :math:`\kappa =R/c_{p}`. For convenience we will make use of the Exner
                0059 function :math:`\Pi (p)` which is defined by:
                0060 
                0061 .. math:: \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }
                0062    :label: Exner
                0063 
                0064 The following relations will be useful and are easily expressed in
                0065 terms of the Exner function:
                0066 
                0067 .. math::
                0068    c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi 
                0069    }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
                0070    \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
                0071    \frac{Dp}{Dt}
                0072 
                0073 where :math:`b=\frac{\partial \ \Pi }{\partial p}\theta` is the buoyancy.
                0074 
                0075 The heat equation is obtained by noting that
                0076 
                0077 .. math::
                0078    c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta 
                0079    \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
                0080 
                0081 and on substituting into :eq:`eq-p-heat-interim` gives:
                0082 
                0083 .. math::
                0084    \Pi \frac{D\theta }{Dt}=\mathcal{Q}
                0085    :label: potential-temperature-equation
                0086 
                0087 which is in conservative form.
                0088 
                0089 For convenience in the model we prefer to step forward
                0090 :eq:`potential-temperature-equation` rather than :eq:`atmos-heat`.
                0091 
                0092 Boundary conditions
                0093 ~~~~~~~~~~~~~~~~~~~
                0094 
                0095 The upper and lower boundary conditions are:
                0096 
                0097 .. math::
                0098    \begin{aligned}\mbox{at the top:}\;\;p=0 &\text{,  }\omega =\frac{Dp}{Dt}=0\end{aligned}
                0099    :label: boundary-condition-atmosphere-top
                0100 
                0101 .. math::
0bad585a21 Navi*0102    \begin{aligned}\mbox{at the surface:}\;\;p=p_{s} &\text{,  }\phi =\phi _{\rm topo}=g~Z_{\rm topo}\end{aligned}
f67abf1ee3 Jeff*0103    :label: boundary-condition-atmosphere-bot
                0104 
                0105 In :math:`p-`\coordinates, the upper boundary acts like a solid boundary
                0106 (:math:`\omega=0` ); in :math:`z-`\coordinates the lower boundary is analogous to a
                0107 free surface (:math:`\phi` is imposed and :math:`\omega \neq 0`).
                0108 
                0109 .. _hpe-p-geo-potential-split:
                0110 
                0111 Splitting the geopotential
                0112 ~~~~~~~~~~~~~~~~~~~~~~~~~~
                0113 
                0114 For the purposes of initialization and reducing round-off errors, the
                0115 model deals with perturbations from reference (or ‘standard’) profiles.
                0116 For example, the hydrostatic geopotential associated with the resting
                0117 atmosphere is not dynamically relevant and can therefore be subtracted
                0118 from the equations. The equations written in terms of perturbations are
                0119 obtained by substituting the following definitions into the previous
                0120 model equations:
                0121 
                0122 .. math::
                0123    \theta = \theta _{o}+\theta ^{\prime }
                0124    :label: atmos-ref-prof-theta 
                0125 
                0126 .. math::
                0127    \alpha = \alpha _{o}+\alpha ^{\prime }
                0128    :label: atmos-ref-prof-alpha
                0129 
                0130 .. math::
                0131    \phi  = \phi _{o}+\phi ^{\prime }
                0132    :label: atmos-ref-prof-phi
                0133 
                0134 The reference state (indicated by subscript ‘*o*’) corresponds to
                0135 horizontally homogeneous atmosphere at rest
                0136 (:math:`\theta _{o},\alpha _{o},\phi_{o}`) with surface pressure :math:`p_{o}(x,y)` that satisfies
0bad585a21 Navi*0137 :math:`\phi_{o}(p_{o})=g~Z_{\rm topo}`, defined:
f67abf1ee3 Jeff*0138 
                0139 .. math:: \theta _{o}(p) = f^{n}(p) \\
                0140 .. math:: \alpha _{o}(p)  = \Pi _{p}\theta _{o} \\
0bad585a21 Navi*0141 .. math:: \phi _{o}(p)  = \phi _{\rm topo}-\int_{p_{0}}^{p}\alpha _{o}dp
f67abf1ee3 Jeff*0142 
                0143 The final form of the **HPE**’s in :math:`p-`\coordinates is then:
                0144 
                0145 .. math::
0bad585a21 Navi*0146    \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\boldsymbol{k}}\times \vec{\mathbf{v}}
                0147    _{h}+ \nabla _{p}\phi ^{\prime } = \vec{\boldsymbol{\mathcal{F}}} 
f67abf1ee3 Jeff*0148    :label: atmos-prime
                0149 
                0150 .. math::
                0151    \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime }  = 0
                0152    :label: atmos-prime2
                0153  
                0154 .. math::
0bad585a21 Navi*0155     \nabla _{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
f67abf1ee3 Jeff*0156    \partial p} = 0
                0157    :label: atmos-prime3
                0158  
                0159 .. math::
                0160    \frac{\partial \Pi }{\partial p}\theta ^{\prime } = \alpha ^{\prime }
                0161    :label: atmos-prime4
                0162 
                0163 .. math::
                0164    \frac{D\theta }{Dt} = \frac{\mathcal{Q}}{\Pi }
                0165    :label: atmos-prime5
                0166