Back to home page

MITgcm

 
 

    


Warning, /doc/overview/coordinate_sys.rst is written in an unsupported language. File is not indexed.

view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
f67abf1ee3 Jeff*0001 .. _operators:
                0002 
                0003 Coordinate systems
                0004 ------------------
                0005 
                0006 Spherical coordinates
                0007 ~~~~~~~~~~~~~~~~~~~~~
                0008 
                0009 In spherical coordinates, the velocity components in the zonal,
                0010 meridional and vertical direction respectively, are given by:
                0011 
                0012 .. math:: u=r\cos \varphi \frac{D\lambda }{Dt}
                0013 
                0014 .. math:: v=r\frac{D\varphi }{Dt}
                0015 
                0016 .. math:: \dot{r}=\frac{Dr}{Dt}
                0017 
                0018 (see :numref:`sphere_coor`) Here :math:`\varphi` is the latitude, :math:`\lambda` the longitude,
                0019 :math:`r` the radial distance of the particle from the center of the
                0020 earth, :math:`\Omega` is the angular speed of rotation of the Earth and
                0021 :math:`D/Dt` is the total derivative.
                0022 
0bad585a21 Navi*0023 The ‘grad’ (:math:`\nabla`) and ‘div’ (:math:`\nabla  \cdot`) operators
f67abf1ee3 Jeff*0024 are defined by, in spherical coordinates:
                0025 
                0026 .. math::
0bad585a21 Navi*0027     \nabla  \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
f67abf1ee3 Jeff*0028    ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
                0029    \right)
                0030 
                0031 .. math::
0bad585a21 Navi*0032     \nabla  \cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
f67abf1ee3 Jeff*0033    \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
                0034    +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
                0035 
                0036 |
                0037 
                0038   .. figure:: figs/sphere.png
                0039     :width: 70%
                0040     :align: center
                0041     :alt: diagram of spherical polar coordinates
                0042     :name: sphere_coor
                0043     
dcaaa42497 Jeff*0044     Spherical polar coordinates: longitude :math:`\lambda`, latitude :math:`\varphi` and :math:`r` the distance from the center.