Warning, /doc/examples/global_oce_biogeo/global_oce_biogeo.rst is written in an unsupported language. File is not indexed.
view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
1c8cebb321 Jeff*0001 .. _sub_global_oce_biogeo:
0002
0003 Biogeochemistry Simulation
0004 ==========================
d67096e55c Jeff*0005
0006 (in directory: :filelink:`verification/tutorial_global_oce_biogeo/`)
0007
0008 Overview
0009 --------
0010
0011 This model overlays the dissolved inorganic carbon biogeochemistry model
0012 (:filelink:`pkg/dic`) over a 2.8\ :sup:`o` global physical model. The
0013 physical model has 15 levels, and is forced with a climatological annual
0014 cycle of surface wind stresses (Trenberth et al. 1989 :cite:`trenberth:89`,
0015 surface heat and freshwater fluxes (Jiang et al. 1999 :cite:`jiang:99`) with
0016 additional relaxation toward climatological sea surface temperature and
0017 salinity (Levitus and Boyer (1994a,b) :cite:`levitus:94a,levitus:94b`). It uses the Gent and
0018 McWilliams (1990) :cite:`gen-mcw:90` eddy parameterization scheme,
0019 has an implicit free-surface, implicit vertical diffusion and uses the
0020 convective adjustment scheme.
0021
0022 The biogeochemical model considers the coupled cycles of carbon, oxygen,
0023 phosphorus and alkalinity. A simplified parameterization of biological
0024 production is used, limited by the availability of light and phosphate.
0025 A fraction of this productivity enters the dissolved organic pool pool,
0026 which has an e-folding timescale for remineralization of 6 months
0027 (following Yamanaka and Tajika 1997 :cite:`yamanaka:97`). The remaining fraction of this
0028 productivity is instantaneously exported as particulate to depth
0029 (Yamanaka and Tajika 1997 :cite:`yamanaka:97`) where it is remineralized according to the
0030 empirical power law relationship determined by Martin et al. (1987]) :cite:`martin:87`. The
0031 fate of carbon is linked to that of phosphorus by the Redfield ratio.
0032 Carbonate chemistry is explicitly solved (see Follow et al. 2006)
0033 :cite:`follows:06`) and the air-sea exchange of
1c8cebb321 Jeff*0034 CO\ :sub:`2` is parameterized with a uniform gas transfer coefficient
d67096e55c Jeff*0035 following Wanninkhof (1992) :cite:`wannink:92`. Oxygen is also linked to
0036 phosphorus by the Redfield ratio, and oxygen air-sea exchange also
0037 follows Wanninkhof (1992) :cite:`wannink:92`. For more details see
0038 Dutkiewicz et al. (2005) :cite:`dutkiewicz:05`.
0039
0040 The example setup described here shows the physical model after 5900
0041 years of spin-up and the biogeochemistry after 2900 years of spin-up.
0042 The biogeochemistry is at a pre-industrial steady-state (atmospheric
0043 ppmv is kept at 278). Five tracers are resolved: dissolved inorganic
0044 carbon (:math:`DIC`), alkalinity (:math:`ALK`), phosphate (:math:`PO4`),
0045 dissolved organic phosphorus (:math:`DOP`) and dissolved oxygen
0046 (:math:`O2`).
0047
0048 .. figure:: figs/co2flux.png
0049 :width: 80%
0050 :align: center
0051 :alt: Modeled annual mean air-sea CO2
0052 :name: tut_biogeochem_co2flux
0053
0054 Modeled annual mean air-sea CO\ :sub:`2` flux (mol C m\ :sup:`-2` y\ :sup:`-1`) for pre-industrial steady-state. Positive indicates flux of CO\ :sub:`2` from ocean to the atmosphere (out-gassing), contour interval is 1 mol C m\ :sup:`-2` y\ :sup:`-1`.
0055
0056 Equations Solved
0057 ----------------
0058
0059 The physical ocean model velocity and diffusivities are used to
0060 redistribute the 5 tracers within the ocean. Additional redistribution
0061 comes from chemical and biological sources and sinks. For any tracer
0062 :math:`A`:
0063
0064 .. math::
0065
0bad585a21 Navi*0066 \frac{\partial A}{\partial t}=- \nabla \cdot (\vec{u^{*}} A)+ \nabla \cdot
d67096e55c Jeff*0067 (\mathbf{K}\nabla A)+S_A \nonumber
0068
0069 where :math:`\vec{u^{*}}` is the transformed Eulerian mean circulation
0070 (which includes Eulerian and eddy-induced advection), :math:`\mathbf{K}`
0071 is the mixing tensor, and :math:`S_A` are the sources and sinks due to
0072 biological and chemical processes.
0073
0074 The sources and sinks are:
0075
0076 .. math::
0077 \begin{aligned}
0bad585a21 Navi*0078 S_{DIC} & = F_{CO_2} + V_{CO_2} + r_{C:P} S_{PO_4} + J_{Ca} \\
0079 S_{ALK} & = V_{ALK}-r_{N:P} S_{PO_4} + 2 J_{Ca} \\
0080 S_{PO_4}& = -f_{DOP} J_{prod} - \frac{\partial F_P}{\partial z} + \kappa_{remin} [DOP]\\
0081 S_{DOP} & = f_{DOP} J_{prod} -\kappa_{remin} [DOP] \\
0082 S_{O_2} & = \left\{ \begin{array}{ll}
d67096e55c Jeff*0083 -r_{O:P} S_{PO_4} & \mbox{if $O_2>O_{2crit}$} \\
0084 0 & \mbox{if $O_2<O_{2crit}$}
0085 \end{array}
0086 \right. \end{aligned}
0087
0088 where:
0089
0090 - :math:`F_{CO_2}` is the flux of CO\ :sup:`2` from the ocean to the
0091 atmosphere
0092
0093 - :math:`V_{CO_2}` is “virtual flux” due to changes in :math:`DIC` due
0094 to the surface freshwater fluxes
0095
0096 - :math:`r_{C:P}` is Redfield ratio of carbon to phosphorus
0097
0098 - :math:`J_{Ca}` includes carbon removed from surface due to calcium
0099 carbonate formation and subsequent cumulation of the downward flux of
0100 CaCO\ :math:`_3`
0101
0102 - :math:`V_{ALK}` is “virtual flux” due to changes in alkalinity due to
0103 the surface freshwater fluxes
0104
0105 - :math:`r_{N:P}` Redfield ratio is nitrogen to phosphorus
0106
0107 - :math:`f_{DOP}` is fraction of productivity that remains suspended in
0108 the water column as dissolved organic phosphorus
0109
0110 - :math:`J_{prod}` is the net community productivity
0111
0112 - :math:`\frac{\partial F_P}{\partial z}` is the accumulation of
0113 remineralized phosphorus with depth
0114
0115 - :math:`\kappa_{remin}` is rate with which :math:`DOP` remineralizes
0116 back to :math:`PO_4`
0117
0118 - :math:`F_{O_2}` is air-sea flux of oxygen
0119
0120 - :math:`r_{O:P}` is Redfield ratio of oxygen to phosphorus
0121
0122 - :math:`O_{2crit}` is a critical level below which oxygen consumption
0123 if halted
0124
0125 These terms (for the first four tracers) are described more in
0126 Dutkiewicz et al. (2005) :cite:`dutkiewicz:05` and by
0127 McKinley et al. (2004) :cite:`mckinley:04` for the terms relating to oxygen.
0128
0129 Code configuration
0130 ------------------
0131
0132 The modifications to the code (in
0133 :filelink:`verification/tutorial_global_oce_biogeo/code`) are:
0134
0135 - :filelink:`code/SIZE.h <verification/tutorial_global_oce_biogeo/code/SIZE.h>`: which dictates the size of the model domain (128x64x15).
0136
0137 - :filelink:`code/PTRACERS_SIZE.h <verification/tutorial_global_oce_biogeo/code/PTRACERS_SIZE.h>`: which dictates how many tracers to assign how
0138 many tracers will be used (here, 5).
0139
0140 - :filelink:`code/DIAGNOSTICS_SIZE.h <verification/tutorial_global_oce_biogeo/code/DIAGNOSTICS_SIZE.h>`: assigns size information for the diagnostics
0141 package.
0142
0143 - :filelink:`code/packages.conf <verification/tutorial_global_oce_biogeo/code/packages.conf>`: which dictates which packages will be compiled in
0144 this version of the model - among the many that are used for the
0145 physical part of the model, this also includes :filelink:`pkg/ptracers`, :filelink:`pkg/gchem`,
0146 and :filelink:`pkg/dic` which allow the biogeochemical part of this setup to
0147 function.
0148
0149 The input fields needed for this run (in
0150 :filelink:`verification/tutorial_global_oce_biogeo/input`) are:
0151
0152 - :filelink:`input/data <verification/tutorial_global_oce_biogeo/input/data>`: specifies the main parameters for the experiment. Some
0153 parameters that may be useful to know: :varlink:`nTimeSteps` number timesteps
0154 model will run, change to 720 to run for a year :varlink:`taveFreq` frequency
0155 with which time averages are done, change to 31104000 for annual
0156 averages.
0157
0158 - :filelink:`input/data.diagnostics <verification/tutorial_global_oce_biogeo/input/data.diagnostics>`: specifies details of diagnostic pkg output
0159
0160 - :filelink:`input/data.gchem <verification/tutorial_global_oce_biogeo/input/data.gchem>`: specifies details needed in the
0161 biogeochemistry model run
0162
0163 - :filelink:`input/data.gmredi <verification/tutorial_global_oce_biogeo/input/data.gmredi>`: specifies details for the GM parameterization
0164
0165 - :filelink:`input/data.pkg <verification/tutorial_global_oce_biogeo/input/data.pkg>`: set true or false for various packages to be used
0166
0167 - :filelink:`input/data.ptracers <verification/tutorial_global_oce_biogeo/input/data.ptracers>`: details of the tracers to be used, including
0168 makes, diffusivity information and (if needed) initial files. Of
0169 particular importance is the :varlink:`PTRACERS_numInUse` which states how
0170 many tracers are used, and :varlink:`PTRACERS_Iter0` which states at which
0171 timestep the biogeochemistry model tracers were initialized.
0172
5197f5318e Dust*0173 - ``bathy.bin``: bathymetry data file
d67096e55c Jeff*0174
0175 - :filelink:`input/eedata <verification/tutorial_global_oce_biogeo/input/eedata>`: This file uses standard default values and does not
0176 contain customizations for this experiment.
0177
0178 - ``fice.bin``: ice data file, needed for the biogeochemistry
0179
0180 - ``lev_monthly_salt.bin``: SSS values which model relaxes toward
0181
0182 - ``lev_monthly_temp.bin``: SST values which model relaxes toward
0183
0184 - ``pickup.0005184000.data``: variable and tendency values need to
0185 restart the physical part of the model
0186
0187 - ``pickup_cd.0005184000.data``: variable and tendency values need to
0188 restart the cd pkg
0189
0190 - ``pickup_ptracers.0005184000.data``: variable and tendency values
0191 need to restart the the biogeochemistry part of the model
0192
0193 - ``shi_empmr_year.bin``: freshwater forcing data file
0194
0195 - ``shi_qnet.bin``: heat flux forcing data file
0196
0197 - ``sillev1.bin``: silica data file, need for the biogeochemistry
0198
0199 - ``tren_speed.bin``: wind speed data file, needed for the
0200 biogeochemistry
0201
0202 - ``tren_taux.bin``: meridional wind stress data file
0203
0204 - ``tren_tauy.bin``: zonal wind stress data file
0205
0206 Running the example
0207 -------------------
0208
0209 As the model is set up to run in the verification experiment, it only
0210 runs for 4 timesteps (2 days) and outputs data at the end of this short
0211 run. For a more informative run, you will need to run longer. As set up,
0212 this model starts from a pre-spun up state and initializes physical
0213 fields and the biogeochemical tracers from the pickup files.
0214
0215 Physical data (e.g., S,T, velocities etc) will be output as for any
0216 regular ocean run. The biogeochemical output are:
0217
0218 - tracer snapshots: look in :filelink:`input/data.ptracers <verification/tutorial_global_oce_biogeo/input/data.ptracers>` to see which
0219 number matches which type of tracer (e.g., ptracer01 is DIC).
0220
0221 - tracer time averages
0222
0223 - specific DIC diagnostics: these are averaged over :varlink:`taveFreq` (set in
0224 :filelink:`input/data <verification/tutorial_global_oce_biogeo/input/data>`) and are specific to :filelink:`pkg/dic` (currently are only
0225 available in binary format):
0226
0227 - ``DIC_Biotave``: 3-D biological community productivity (mol P
0228 m\ :sup:`-3` s\ :sup:`-1`)
0229
0230 - ``DIC_Cartave``: 3-D tendencies due to calcium carbonate cycle
0231 (mol C m\ :sup:`-3` s\ :sup:`-1`)
0232
0233 - ``DIC_fluxCO2ave``: 2-D air-sea flux of CO\ :sub:`2` (mol C
0234 m\ :sup:`-2` s\ :sup:`-1`)
0235
0236 - ``DIC_pCO2tave``: 2-D partial pressure of CO\ :sub:`2` in
0237 surface layer
0238
0239 - ``DIC_pHtave``: 2-D pH in surface layer
0240
0241 - ``DIC_SurOtave``: 2-D tendency due to air-sea flux of
0242 O\ :sub:`2` (mol O m\ :sup:`-3` s\ :sup:`-1`)
0243
0244 - ``DIC_Surtave``: 2-D surface tendency of DIC due to air-sea flux
0245 and virtual flux (mol C m\ :sup:`-3` s\ :sup:`-1`)