Back to home page

MITgcm

 
 

    


Warning, /doc/examples/global_oce_biogeo/global_oce_biogeo.rst is written in an unsupported language. File is not indexed.

view on githubraw file Latest commit 0bad585a on 2022-02-16 18:55:09 UTC
1c8cebb321 Jeff*0001 .. _sub_global_oce_biogeo:
                0002 
                0003 Biogeochemistry Simulation
                0004 ==========================
d67096e55c Jeff*0005 
                0006 (in directory: :filelink:`verification/tutorial_global_oce_biogeo/`)
                0007 
                0008 Overview
                0009 --------
                0010 
                0011 This model overlays the dissolved inorganic carbon biogeochemistry model
                0012 (:filelink:`pkg/dic`) over a 2.8\ :sup:`o` global physical model. The
                0013 physical model has 15 levels, and is forced with a climatological annual
                0014 cycle of surface wind stresses (Trenberth et al. 1989 :cite:`trenberth:89`,
                0015 surface heat and freshwater fluxes (Jiang et al. 1999 :cite:`jiang:99`) with
                0016 additional relaxation toward climatological sea surface temperature and
                0017 salinity (Levitus and Boyer (1994a,b) :cite:`levitus:94a,levitus:94b`). It uses the Gent and
                0018 McWilliams (1990) :cite:`gen-mcw:90` eddy parameterization scheme,
                0019 has an implicit free-surface, implicit vertical diffusion and uses the
                0020 convective adjustment scheme.
                0021 
                0022 The biogeochemical model considers the coupled cycles of carbon, oxygen,
                0023 phosphorus and alkalinity. A simplified parameterization of biological
                0024 production is used, limited by the availability of light and phosphate.
                0025 A fraction of this productivity enters the dissolved organic pool pool,
                0026 which has an e-folding timescale for remineralization of 6 months
                0027 (following Yamanaka and Tajika 1997 :cite:`yamanaka:97`). The remaining fraction of this
                0028 productivity is instantaneously exported as particulate to depth
                0029 (Yamanaka and Tajika 1997 :cite:`yamanaka:97`) where it is remineralized according to the
                0030 empirical power law relationship determined by Martin et al. (1987]) :cite:`martin:87`. The
                0031 fate of carbon is linked to that of phosphorus by the Redfield ratio.
                0032 Carbonate chemistry is explicitly solved (see Follow et al. 2006)
                0033 :cite:`follows:06`) and the air-sea exchange of
1c8cebb321 Jeff*0034 CO\ :sub:`2` is parameterized with a uniform gas transfer coefficient
d67096e55c Jeff*0035 following Wanninkhof (1992) :cite:`wannink:92`. Oxygen is also linked to
                0036 phosphorus by the Redfield ratio, and oxygen air-sea exchange also
                0037 follows Wanninkhof (1992) :cite:`wannink:92`. For more details see
                0038 Dutkiewicz et al. (2005) :cite:`dutkiewicz:05`.
                0039 
                0040 The example setup described here shows the physical model after 5900
                0041 years of spin-up and the biogeochemistry after 2900 years of spin-up.
                0042 The biogeochemistry is at a pre-industrial steady-state (atmospheric
                0043 ppmv is kept at 278). Five tracers are resolved: dissolved inorganic
                0044 carbon (:math:`DIC`), alkalinity (:math:`ALK`), phosphate (:math:`PO4`),
                0045 dissolved organic phosphorus (:math:`DOP`) and dissolved oxygen
                0046 (:math:`O2`).
                0047 
                0048    .. figure:: figs/co2flux.png
                0049        :width: 80%
                0050        :align: center
                0051        :alt: Modeled annual mean air-sea CO2
                0052        :name: tut_biogeochem_co2flux
                0053 
                0054        Modeled annual mean air-sea CO\ :sub:`2` flux (mol C m\ :sup:`-2` y\ :sup:`-1`) for pre-industrial steady-state. Positive indicates flux of CO\ :sub:`2` from ocean to the atmosphere (out-gassing), contour interval is 1 mol C m\ :sup:`-2` y\ :sup:`-1`.
                0055 
                0056 Equations Solved
                0057 ----------------
                0058 
                0059 The physical ocean model velocity and diffusivities are used to
                0060 redistribute the 5 tracers within the ocean. Additional redistribution
                0061 comes from chemical and biological sources and sinks. For any tracer
                0062 :math:`A`:
                0063 
                0064 .. math::
                0065 
0bad585a21 Navi*0066    \frac{\partial A}{\partial t}=- \nabla  \cdot (\vec{u^{*}} A)+ \nabla  \cdot
d67096e55c Jeff*0067      (\mathbf{K}\nabla A)+S_A \nonumber
                0068 
                0069 where :math:`\vec{u^{*}}` is the transformed Eulerian mean circulation
                0070 (which includes Eulerian and eddy-induced advection), :math:`\mathbf{K}`
                0071 is the mixing tensor, and :math:`S_A` are the sources and sinks due to
                0072 biological and chemical processes.
                0073 
                0074 The sources and sinks are:
                0075 
                0076 .. math::
                0077    \begin{aligned}
0bad585a21 Navi*0078    S_{DIC} & =  F_{CO_2} + V_{CO_2} + r_{C:P} S_{PO_4}  + J_{Ca} \\
                0079    S_{ALK} & =  V_{ALK}-r_{N:P} S_{PO_4}  + 2 J_{Ca}  \\
                0080    S_{PO_4}& =  -f_{DOP} J_{prod} - \frac{\partial F_P}{\partial z} + \kappa_{remin} [DOP]\\
                0081    S_{DOP} & =  f_{DOP} J_{prod} -\kappa_{remin} [DOP] \\
                0082    S_{O_2} & = \left\{ \begin{array}{ll}
d67096e55c Jeff*0083                   -r_{O:P} S_{PO_4} & \mbox{if $O_2>O_{2crit}$} \\
                0084                    0  & \mbox{if $O_2<O_{2crit}$}
                0085                          \end{array}
                0086                  \right. \end{aligned}
                0087 
                0088 where:
                0089 
                0090 -  :math:`F_{CO_2}` is the flux of CO\ :sup:`2` from the ocean to the
                0091    atmosphere
                0092 
                0093 -  :math:`V_{CO_2}` is “virtual flux” due to changes in :math:`DIC` due
                0094    to the surface freshwater fluxes
                0095 
                0096 -  :math:`r_{C:P}` is Redfield ratio of carbon to phosphorus
                0097 
                0098 -  :math:`J_{Ca}` includes carbon removed from surface due to calcium
                0099    carbonate formation and subsequent cumulation of the downward flux of
                0100    CaCO\ :math:`_3`
                0101 
                0102 -  :math:`V_{ALK}` is “virtual flux” due to changes in alkalinity due to
                0103    the surface freshwater fluxes
                0104 
                0105 -  :math:`r_{N:P}` Redfield ratio is nitrogen to phosphorus
                0106 
                0107 -  :math:`f_{DOP}` is fraction of productivity that remains suspended in
                0108    the water column as dissolved organic phosphorus
                0109 
                0110 -  :math:`J_{prod}` is the net community productivity
                0111 
                0112 -  :math:`\frac{\partial F_P}{\partial z}` is the accumulation of
                0113    remineralized phosphorus with depth
                0114 
                0115 -  :math:`\kappa_{remin}` is rate with which :math:`DOP` remineralizes
                0116    back to :math:`PO_4`
                0117 
                0118 -  :math:`F_{O_2}` is air-sea flux of oxygen
                0119 
                0120 -  :math:`r_{O:P}` is Redfield ratio of oxygen to phosphorus
                0121 
                0122 -  :math:`O_{2crit}` is a critical level below which oxygen consumption
                0123    if halted
                0124 
                0125 These terms (for the first four tracers) are described more in
                0126 Dutkiewicz et al. (2005) :cite:`dutkiewicz:05` and by
                0127 McKinley et al. (2004) :cite:`mckinley:04` for the terms relating to oxygen.
                0128 
                0129 Code configuration
                0130 ------------------
                0131 
                0132 The modifications to the code (in
                0133 :filelink:`verification/tutorial_global_oce_biogeo/code`) are:
                0134 
                0135 -  :filelink:`code/SIZE.h <verification/tutorial_global_oce_biogeo/code/SIZE.h>`: which dictates the size of the model domain (128x64x15).
                0136 
                0137 -  :filelink:`code/PTRACERS_SIZE.h <verification/tutorial_global_oce_biogeo/code/PTRACERS_SIZE.h>`: which dictates how many tracers to assign how
                0138    many tracers will be used (here, 5).
                0139 
                0140 -  :filelink:`code/DIAGNOSTICS_SIZE.h <verification/tutorial_global_oce_biogeo/code/DIAGNOSTICS_SIZE.h>`: assigns size information for the diagnostics
                0141    package.
                0142 
                0143 -  :filelink:`code/packages.conf <verification/tutorial_global_oce_biogeo/code/packages.conf>`: which dictates which packages will be compiled in
                0144    this version of the model - among the many that are used for the
                0145    physical part of the model, this also includes :filelink:`pkg/ptracers`,  :filelink:`pkg/gchem`,
                0146    and :filelink:`pkg/dic` which allow the biogeochemical part of this setup to
                0147    function.
                0148 
                0149 The input fields needed for this run (in
                0150 :filelink:`verification/tutorial_global_oce_biogeo/input`) are:
                0151 
                0152 -  :filelink:`input/data <verification/tutorial_global_oce_biogeo/input/data>`: specifies the main parameters for the experiment. Some
                0153    parameters that may be useful to know: :varlink:`nTimeSteps` number timesteps
                0154    model will run, change to 720 to run for a year :varlink:`taveFreq` frequency
                0155    with which time averages are done, change to 31104000 for annual
                0156    averages.
                0157 
                0158 -  :filelink:`input/data.diagnostics <verification/tutorial_global_oce_biogeo/input/data.diagnostics>`: specifies details of diagnostic pkg output
                0159 
                0160 -  :filelink:`input/data.gchem <verification/tutorial_global_oce_biogeo/input/data.gchem>`: specifies details needed in the
                0161    biogeochemistry model run
                0162 
                0163 -  :filelink:`input/data.gmredi <verification/tutorial_global_oce_biogeo/input/data.gmredi>`: specifies details for the GM parameterization
                0164 
                0165 -  :filelink:`input/data.pkg <verification/tutorial_global_oce_biogeo/input/data.pkg>`: set true or false for various packages to be used
                0166 
                0167 -  :filelink:`input/data.ptracers <verification/tutorial_global_oce_biogeo/input/data.ptracers>`: details of the tracers to be used, including
                0168    makes, diffusivity information and (if needed) initial files. Of
                0169    particular importance is the :varlink:`PTRACERS_numInUse` which states how
                0170    many tracers are used, and :varlink:`PTRACERS_Iter0` which states at which
                0171    timestep the biogeochemistry model tracers were initialized.
                0172 
5197f5318e Dust*0173 -  ``bathy.bin``: bathymetry data file
d67096e55c Jeff*0174 
                0175 -  :filelink:`input/eedata <verification/tutorial_global_oce_biogeo/input/eedata>`: This file uses standard default values and does not
                0176    contain customizations for this experiment.
                0177 
                0178 -  ``fice.bin``: ice data file, needed for the biogeochemistry
                0179 
                0180 -  ``lev_monthly_salt.bin``: SSS values which model relaxes toward
                0181 
                0182 -  ``lev_monthly_temp.bin``: SST values which model relaxes toward
                0183 
                0184 -  ``pickup.0005184000.data``: variable and tendency values need to
                0185    restart the physical part of the model
                0186 
                0187 -  ``pickup_cd.0005184000.data``: variable and tendency values need to
                0188    restart the cd pkg
                0189 
                0190 -  ``pickup_ptracers.0005184000.data``: variable and tendency values
                0191    need to restart the the biogeochemistry part of the model
                0192 
                0193 -  ``shi_empmr_year.bin``: freshwater forcing data file
                0194 
                0195 -  ``shi_qnet.bin``: heat flux forcing data file
                0196 
                0197 -  ``sillev1.bin``: silica data file, need for the biogeochemistry
                0198 
                0199 -  ``tren_speed.bin``: wind speed data file, needed for the
                0200    biogeochemistry
                0201 
                0202 -  ``tren_taux.bin``: meridional wind stress data file
                0203 
                0204 -  ``tren_tauy.bin``: zonal wind stress data file
                0205 
                0206 Running the example
                0207 -------------------
                0208 
                0209 As the model is set up to run in the verification experiment, it only
                0210 runs for 4 timesteps (2 days) and outputs data at the end of this short
                0211 run. For a more informative run, you will need to run longer. As set up,
                0212 this model starts from a pre-spun up state and initializes physical
                0213 fields and the biogeochemical tracers from the pickup files.
                0214 
                0215 Physical data (e.g., S,T, velocities etc) will be output as for any
                0216 regular ocean run. The biogeochemical output are:
                0217 
                0218 -  tracer snapshots: look in :filelink:`input/data.ptracers <verification/tutorial_global_oce_biogeo/input/data.ptracers>` to see which
                0219    number matches which type of tracer (e.g., ptracer01 is DIC).
                0220 
                0221 -  tracer time averages
                0222 
                0223 -  specific DIC diagnostics: these are averaged over :varlink:`taveFreq` (set in
                0224    :filelink:`input/data <verification/tutorial_global_oce_biogeo/input/data>`) and are specific to :filelink:`pkg/dic` (currently are only
                0225    available in binary format):
                0226 
                0227    -  ``DIC_Biotave``: 3-D biological community productivity (mol P
                0228       m\ :sup:`-3` s\ :sup:`-1`)
                0229 
                0230    -  ``DIC_Cartave``: 3-D tendencies due to calcium carbonate cycle
                0231       (mol C m\ :sup:`-3` s\ :sup:`-1`)
                0232 
                0233    -  ``DIC_fluxCO2ave``: 2-D air-sea flux of CO\ :sub:`2` (mol C
                0234       m\ :sup:`-2` s\ :sup:`-1`)
                0235 
                0236    -  ``DIC_pCO2tave``: 2-D partial pressure of CO\ :sub:`2` in
                0237       surface layer
                0238 
                0239    -  ``DIC_pHtave``: 2-D pH in surface layer
                0240 
                0241    -  ``DIC_SurOtave``: 2-D tendency due to air-sea flux of
                0242       O\ :sub:`2` (mol O m\ :sup:`-3` s\ :sup:`-1`)
                0243 
                0244    -  ``DIC_Surtave``: 2-D surface tendency of DIC due to air-sea flux
                0245       and virtual flux (mol C m\ :sup:`-3` s\ :sup:`-1`)