#include "STREAMICE_OPTIONS.h" C-- File streamice_cg_functions.F: C-- Contents: C-- o STREAMICE_CG_ACTION C-- o STREAMICE_CG_MAKE_A C-- o STREAMICE_CG_ADIAG C-- o STREAMICE_CG_BOUND_VALS C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| CBOP SUBROUTINE STREAMICE_CG_ACTION( myThid, O uret, O vret, I u, I v, I is, ie, js, je ) C /============================================================\ C | SUBROUTINE | C | o | C |============================================================| C | | C \============================================================/ IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "STREAMICE.h" #include "STREAMICE_CG.h" C !INPUT/OUTPUT ARGUMENTS C uret, vret - result of matrix operating on u, v C is, ie, js, je - starting and ending cells INTEGER myThid _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) INTEGER is, ie, js, je #ifdef ALLOW_STREAMICE C the linear action of the matrix on (u,v) with triangular finite elements C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, C but this may change pursuant to conversations with others C C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine C in order to make less frequent halo updates C isym = 1 if grid is symmetric, 0 o.w. C the linear action of the matrix on (u,v) with triangular finite elements C Phi has the form C Phi (i,j,k,q) - applies to cell i,j C 3 - 4 C | | C 1 - 2 C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear C !LOCAL VARIABLES: C == Local variables == INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n,Gi,Gj _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy _RL phival(2,2) uret(1,1,1,1) = uret(1,1,1,1) vret(1,1,1,1) = vret(1,1,1,1) DO j = js, je DO i = is, ie DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) Gi = (myXGlobalLo-1)+(bi-1)*sNx+i Gj = (myYGlobalLo-1)+(bj-1)*sNy+j IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN DO iq = 1,2 DO jq = 1,2 n = 2*(jq-1)+iq uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + & u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + & u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + & u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + & v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + & v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + & v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + & u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + & u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + & u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + & u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + & u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + & u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + & v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + & v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + & v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + & v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + & v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + & v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) exx = ux + k1AtC_str(i,j,bi,bj)*vq eyy = vy + k2AtC_str(i,j,bi,bj)*uq exy = .5*(uy+vx) + & k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq do inode = 1,2 do jnode = 1,2 m = 2*(jnode-1)+inode ilq = 1 jlq = 1 if (inode.eq.iq) ilq = 2 if (jnode.eq.jq) jlq = 2 phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + & DPhi(i,j,bi,bj,m,n,2)*(2*exy)) uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inode,jnode) * & (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ & 4*0.5*k1AtC_str(i,j,bi,bj)*exy) uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & phival(inode,jnode) * & grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * uq endif if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + & DPhi(i,j,bi,bj,m,n,1)*(2*exy)) vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inode,jnode) * & (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ & 4*0.5*k2AtC_str(i,j,bi,bj)*exy) vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & phival(inode,jnode) * & grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * vq endif enddo enddo enddo enddo c-- STREAMICE_hmask endif enddo enddo enddo enddo #endif RETURN END SUBROUTINE SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) C /============================================================\ C | SUBROUTINE | C | o | C |============================================================| C | | C \============================================================/ IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "STREAMICE.h" #include "STREAMICE_CG.h" C !INPUT/OUTPUT ARGUMENTS C uret, vret - result of matrix operating on u, v C is, ie, js, je - starting and ending cells INTEGER myThid #ifdef ALLOW_STREAMICE #ifdef STREAMICE_CONSTRUCT_MATRIX C the linear action of the matrix on (u,v) with triangular finite elements C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, C but this may change pursuant to conversations with others C C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine C in order to make less frequent halo updates C isym = 1 if grid is symmetric, 0 o.w. C the linear action of the matrix on (u,v) with triangular finite elements C Phi has the form C Phi (i,j,k,q) - applies to cell i,j C 3 - 4 C | | C 1 - 2 C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear C !LOCAL VARIABLES: C == Local variables == INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n INTEGER jnodx,jnody, m_j, col_y, col_x, cg_halo INTEGER colx_rev, coly_rev _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, tmpval _RL phival(2,2) c do i=1,3 c do j=0,2 c col_index_a = i + j*3 c enddo c enddo cg_halo = min(OLx-1,OLy-1) DO j = 1-cg_halo, sNy+cg_halo DO i = 1-cg_halo, sNx+cg_halo DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) cc DO k=1,4 DO col_x=-1,1 DO col_y=-1,1 streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 ENDDO ENDDO cc ENDDO ENDDO ENDDO ENDDO ENDDO c$openad xxx simple loop DO j = 1-cg_halo, sNy+cg_halo DO i = 1-cg_halo, sNx+cg_halo DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN DO iq=1,2 DO jq = 1,2 n = 2*(jq-1)+iq DO inodx = 1,2 DO inody = 1,2 if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) & .eq.1.0 .or. & streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) & then m_i = 2*(inody-1)+inodx ilqx = 1 ilqy = 1 if (inodx.eq.iq) ilqx = 2 if (inody.eq.jq) ilqy = 2 phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) DO jnodx = 1,2 DO jnody = 1,2 if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) & .eq.1.0 .or. & STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) & then m_j = 2*(jnody-1)+jnodx ilqx = 1 ilqy = 1 if (jnodx.eq.iq) ilqx = 2 if (jnody.eq.jq) ilqy = 2 c col_j = col_index_a ( c & jnodx+mod(inodx,2), c & jnody+mod(inody,2) ) col_x = mod(inodx,2)+jnodx-2 colx_rev = mod(jnodx,2)+inodx-2 col_y = mod(inody,2)+jnody-2 coly_rev = mod(jnody,2)+inody-2 c IF ( (inodx.eq.jnodx .and. inody.eq.jnody) .or. & (inodx.eq.1 .and. inody.eq.1) .or. & (jnody.eq.2 .and. inody.eq.1) .or. & (jnody.eq.2 .and. jnodx.eq.2)) THEN ux = DPhi (i,j,bi,bj,m_j,n,1) uy = DPhi (i,j,bi,bj,m_j,n,2) vx = 0 vy = 0 uq = Xquad(ilqx) * Xquad(ilqy) vq = 0 exx = ux + k1AtC_str(i,j,bi,bj)*vq eyy = vy + k2AtC_str(i,j,bi,bj)*uq exy = .5*(uy+vx) + & k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + & DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) streamice_cg_A1 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A1 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A1 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A1 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF c!! tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + & DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) streamice_cg_A3 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A3 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A2 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A2 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF c!! tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inodx,inody) * & (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* & exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) streamice_cg_A1 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A1 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A1 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A1 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF c!! tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inodx,inody) * & (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* & eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) streamice_cg_A3 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A3 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A2 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A2 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF c!! tmpval = .25*phival(inodx,inody) * & grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * uq streamice_cg_A1 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A1 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A1 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A1 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF c!! tmpval = .25*phival(inodx,inody) * & grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * vq streamice_cg_A3 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A3 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A2 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A2 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF c!! vx = DPhi (i,j,bi,bj,m_j,n,1) vy = DPhi (i,j,bi,bj,m_j,n,2) ux = 0 uy = 0 vq = Xquad(ilqx) * Xquad(ilqy) uq = 0 exx = ux + k1AtC_str(i,j,bi,bj)*vq eyy = vy + k2AtC_str(i,j,bi,bj)*uq exy = .5*(uy+vx) + & k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + & DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) streamice_cg_A2 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A2 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A3 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A3 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + & DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) streamice_cg_A4 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A4 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A4 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A4 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inodx,inody) * & (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* & exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) streamice_cg_A2 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A2 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A3 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A3 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF tmpval = .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inodx,inody) * & (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* & eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) streamice_cg_A4 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A4 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A4 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A4 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF tmpval = .25*phival(inodx,inody) * & grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * uq streamice_cg_A2 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A2 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A3 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A3 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF tmpval = .25*phival(inodx,inody) * & grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * vq streamice_cg_A4 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)= & streamice_cg_A4 & (i-1+inodx,j-1+inody,bi,bj,mod(inodx,2)+jnodx-2, & mod(inody,2)+jnody-2)+tmpval IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN streamice_cg_A4 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)= & streamice_cg_A4 & (i-1+jnodx,j-1+jnody,bi,bj,mod(jnodx,2)+inodx-2, & mod(jnody,2)+inody-2)+ & tmpval ENDIF endif endif enddo enddo endif enddo enddo enddo enddo endif enddo enddo enddo enddo #endif #endif RETURN END SUBROUTINE c END MAKE_A SUBROUTINE STREAMICE_CG_ADIAG( myThid, O uret, O vret) C /============================================================\ C | SUBROUTINE | C | o | C |============================================================| C | | C \============================================================/ IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "STREAMICE.h" #include "STREAMICE_CG.h" C !INPUT/OUTPUT ARGUMENTS C uret, vret - result of matrix operating on u, v C is, ie, js, je - starting and ending cells INTEGER myThid _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) #ifdef ALLOW_STREAMICE C the linear action of the matrix on (u,v) with triangular finite elements C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, C but this may change pursuant to conversations with others C C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine C in order to make less frequent halo updates C isym = 1 if grid is symmetric, 0 o.w. C the linear action of the matrix on (u,v) with triangular finite elements C Phi has the form C Phi (i,j,k,q) - applies to cell i,j C 3 - 4 C | | C 1 - 2 C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear C !LOCAL VARIABLES: C == Local variables == INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy _RL phival(2,2) uret(1,1,1,1) = uret(1,1,1,1) vret(1,1,1,1) = vret(1,1,1,1) DO j = 0, sNy+1 DO i = 0, sNx+1 DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN DO iq=1,2 DO jq = 1,2 n = 2*(jq-1)+iq DO inode = 1,2 DO jnode = 1,2 m = 2*(jnode-1)+inode if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. & STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) & then ilq = 1 jlq = 1 if (inode.eq.iq) ilq = 2 if (jnode.eq.jq) jlq = 2 phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) ux = DPhi (i,j,bi,bj,m,n,1) uy = DPhi (i,j,bi,bj,m,n,2) vx = 0 vy = 0 uq = Xquad(ilq) * Xquad(jlq) vq = 0 exx = ux + k1AtC_str(i,j,bi,bj)*vq eyy = vy + k2AtC_str(i,j,bi,bj)*uq exy = .5*(uy+vx) + & k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + & DPhi(i,j,bi,bj,m,n,2)*(2*exy)) uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inode,jnode) * & (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ & 4*0.5*k1AtC_str(i,j,bi,bj)*exy) uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * uq vx = DPhi (i,j,bi,bj,m,n,1) vy = DPhi (i,j,bi,bj,m,n,2) ux = 0 uy = 0 vq = Xquad(ilq) * Xquad(jlq) uq = 0 exx = ux + k1AtC_str(i,j,bi,bj)*vq eyy = vy + k2AtC_str(i,j,bi,bj)*uq exy = .5*(uy+vx) + & k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + & DPhi(i,j,bi,bj,m,n,1)*(2*exy)) vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inode,jnode) * & (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ & 4*0.5*k2AtC_str(i,j,bi,bj)*exy) vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * vq endif enddo enddo enddo enddo endif enddo enddo enddo enddo #endif RETURN END SUBROUTINE SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, O uret, O vret) C /============================================================\ C | SUBROUTINE | C | o | C |============================================================| C | | C \============================================================/ IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "STREAMICE.h" #include "STREAMICE_CG.h" C !INPUT/OUTPUT ARGUMENTS C uret, vret - result of matrix operating on u, v C is, ie, js, je - starting and ending cells INTEGER myThid _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) #ifdef ALLOW_STREAMICE C the linear action of the matrix on (u,v) with triangular finite elements C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, C but this may change pursuant to conversations with others C C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine C in order to make less frequent halo updates C isym = 1 if grid is symmetric, 0 o.w. C the linear action of the matrix on (u,v) with triangular finite elements C Phi has the form C Phi (i,j,k,q) - applies to cell i,j C 3 - 4 C | | C 1 - 2 C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear C !LOCAL VARIABLES: C == Local variables == INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy _RL phival(2,2) uret(1,1,1,1) = uret(1,1,1,1) vret(1,1,1,1) = vret(1,1,1,1) DO j = 0, sNy+1 DO i = 0, sNx+1 DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. & ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. & (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. & (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. & (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. & (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. & (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. & (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. & (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN DO iq=1,2 DO jq = 1,2 n = 2*(jq-1)+iq uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ & u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ & u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ & u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ & v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ & v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ & v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + & u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + & u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + & u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + & u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + & u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + & u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + & v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + & v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + & v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + & v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + & v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + & v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) exx = ux + k1AtC_str(i,j,bi,bj)*vq eyy = vy + k2AtC_str(i,j,bi,bj)*uq exy = .5*(uy+vx) + & k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq do inode = 1,2 do jnode = 1,2 m = 2*(jnode-1)+inode ilq = 1 jlq = 1 if (inode.eq.iq) ilq = 2 if (jnode.eq.jq) jlq = 2 phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + & DPhi(i,j,bi,bj,m,n,2)*(2*exy)) uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inode,jnode) * & (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ & 4*0.5*k1AtC_str(i,j,bi,bj)*exy) c if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then uret(i-1+inode,j-1+jnode,bi,bj) = & uret(i-1+inode,j-1+jnode,bi,bj) + .25 * & phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * uq c endif endif if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * ( & DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + & DPhi(i,j,bi,bj,m,n,1)*(2*exy)) vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & grid_jacq_streamice(i,j,bi,bj,n) * & visc_streamice(i,j,bi,bj) * phival(inode,jnode) * & (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ & 4*0.5*k2AtC_str(i,j,bi,bj)*exy) vret(i-1+inode,j-1+jnode,bi,bj) = & vret(i-1+inode,j-1+jnode,bi,bj) + .25 * & phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * & tau_beta_eff_streamice (i,j,bi,bj) * vq endif enddo enddo enddo enddo endif enddo enddo enddo enddo #endif RETURN END SUBROUTINE